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ABSTRACT

This paper addresses the off-grid tensor-guided interpolation
problem, aiming to reconstruct a 3D power spectrum map
from sparse observations. A segmented polynomial model is
employed to handle off-grid measurements, while a nuclear
norm regularization is incorporated to account for the inher-
ent low-rank characteristics of signals. An alternating regres-
sion and singular value thresholding algorithm is developed
to solve the proposed method. The numerical results demon-
strate the superiority of the proposed method, showcasing a
remarkable improvement of over 10% in power spectrum map
reconstruction accuracy when the sampling rate exceeds 6%,
as compared to state-of-the-art approaches.

Index Terms— Tensor-guided, interpolation, off-grid, al-
ternating minimization, power spectrum map.

1. INTRODUCTION

Power spectrum map enables many applications in wire-
less signal processing, including localization [1–3], wireless
power transfer [4], resource management [5], etc. Particu-
larly, the multidimensional nature of wireless signals, e.g., the
signals detected from different frequency bands, enables the
opportunities for tensor structure to be applied in the process-
ing of power spectrum map. However, the signals measured
from real world are not necessarily on-grid and exist sparse
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nature. Exploiting the correlation across the spectral domain
of signals continues to pose a challenge. To enhance the effi-
ciency and accuracy for power spectrum map construction, a
tensor-guided interpolation method is thus developed in this
paper.

Traditional interpolation methods including Kriging [6],
kernel based method [7, 8], and sparse representation meth-
ods such as dictionary learning [9, 10], matrix comple-
tion [1, 11, 12] mainly focus on the 2D power spectrum
map construction. These methods construct the multidimen-
sional power spectrum map by independently reconstructing
each slice, resulting in high computational complexity. Deep
learning-based approaches [13, 14] have gained prominence
with the advent of big data. However, these methods are
computationally intensive and can pose challenges in terms
of interpretability.

Tensor completion [5, 15] and tensor decomposition
[16, 17] methods have garnered attention for their poten-
tial in reconstructing the multi-dimensional power spectrum
map. Most existing tensor-based methods require on-grid
sampling, i.e., the measurements locate on the grid center.
However, this requirement is rarely met in practice. When
the grid size is large, a significant discretization error occurs,
which can degrade the performance of tensor completion.
Conversely, when the grid size is small, meaning there are
more grid points for finer spatial resolution, an identifiability
issue can arise in tensor completion. An interpolation method
is adapted in [17] to deal with the off-grid issue. However,
the interpolation and tensor decomposition work separately
in an open-loop form. A poor interpolation may affect the
tensor completion step.

This paper attempts to address the identifiability issue
in tensor completion for power spectrum map construction
from sparse and off-grid measurements. A segmented poly-
nomial model is adopted for interpolating the power spectrum
map, and a tensor-guided interpolation problem exploiting the
block term tensor decomposition (BTD) structure is formu-
lated. The proposed formulation exploits two properties from
the BTD model: First, there is spatial correlation of propa-
gation over different frequency bands, and second, the power



maps have low-rank structure. We develop an alternating
regression and singular value thresholding algorithm to solve
the tensor-guided interpolation problem. We observe from
the numerical experiments that more than 10% improvement
in the reconstruction accuracy is achieved compared to the
state-of-the-art approaches.

2. SYSTEM MODEL

2.1. Signal Model

Consider that a bounded area D ⊆ R2 contains R signal
sources. The signals occupying K frequency bands are de-
tected by M sensors at known locations zm ∈ D, m =
1, 2, . . . ,M . Denote sr ∈ D as the location of the rth source.
Then, the signal power from the rth signal source measured at
the kth frequency band and location z is modeled as [16, 18]

ρ
(r)
k (z) = (gr(d(sr, z)) + ζr(z) + ηr,k(z))φ

(r)
k (1)

where gr(d(sr, z)) describes the path gain of the rth source at
distance d, the function d(s, z) = ‖s−z‖2 describes the dis-
tance between a source at s and a sensor at z, ζr(z) captures
the shadowing of the signal from the rth source, ηr,k(z) is a
zero mean Gaussian random variable to model the fluctuation
due to the frequency-selective fading, and φ(r)

k describes the
power allocation of the rth source at the kth frequency band.

The aggregated power at the kth frequency band from
all the R sources measured by some sensor located at zm is
denoted as γ(k)

m =
∑R
r=1 ρ

(r)
k (zm) + ε,∀k ∈ Ωm, where

ε ∼ N (0, σ2) is to model the measurement noise, and Ωm ⊆
{1, 2, . . . ,K} contains the set of frequency bands that are
measured by the mth sensor.

Our goal is to reconstruct the propagation field

ρ(r)(z) = gr(d(sr, z)) + ζr(z) (2)

i.e., the first two terms in (1), and the power spectrum φ
(r)
k ,

k = 1, 2, . . . ,K, for each source r. As a result, based on
the propagation model (1), the measurement model can be
derived as

γ(k)
m =

R∑
r=1

ρ(r)(zm)φ
(r)
k + ε̃ (3)

where ε̃ = ηr,k(z)φ
(r)
k + ε is a zero mean random variable

that combines the randomness due to the frequency-selective
small-scale fading ηr,k(z)φ

(r)
k and the measurement noise ε.

2.2. Tensor Model

Consider to discretize the target area D into N1 rows and N2

columns that results inN1×N2 grid cells. Let cij ∈ D be the
center location of the (i, j)th grid cell. Let Sr ∈ RN1×N2 be
a discretized form of the propagation field for the rth source,

where the (i, j)th entry is given by [Sr](i,j) = ρ(r)(cij).
It has been widely discussed in the literature that for many
common propagation scenarios, the matrixSr exists low-rank
property [12, 16].

Let H ∈ RN1×N2×K be a tensor representation of the
target power spectrum map to be constructed. Based on (1),
we use [H](i,j,k) =

∑R
r=1 ρ

(r)(cij)φ
(r)
k to represent the ag-

gregated power of the kth frequency band measured at lo-
cation cij exempted from the small-scale fading component
ηr,k(z)φ

(r)
k . Denote φ(r) = [φ

(r)
1 , ..., φ

(r)
K ]T as the power

spectrum from the rth source. As a result, the tensor H has
the following BTD structure

H =

R∑
r=1

Sr ◦ φ(r) (4)

where ‘◦’ represents outer product.
Conventional tensor-based power spectrum map construc-

tion approaches can complete the tensor H in (4) from the
measurement γ(k)

m in (3), but they require the measurement
γ

(k)
m to be taken at the center of the grid cell [5, 15]. How-

ever, when the grid cells are too large, corresponding to small
N1 and N2, it is hard to guarantee that the sensor at zm is
placed at the corresponding grid center cij , resulting in pos-
sibly large discretization error. When the grid cells are small,
corresponding to large N1 and N2, there might be an identifi-
ability issue as the dimension of the tensor is large.

Recent attempts [17,18] consider to first estimate [H](i,j,k)

using interpolation methods based on the off-grid measure-
ments, and then, employ tensor completion based on the
BTD model (3) to improve the spectrum map construction.
However, these methods are open-loop method, where the
property that Sr are low-rank matrices is not exploited in the
interpolation step; and as a result, a poor interpolation may
affect the performance in the tensor completion step.

3. TENSOR-GUIDED INTERPOLATION

In this section, we propose a closed-loop method for tensor-
guided interpolation, such that the BTD structure of the tensor
model and low-rank property of the tensor components are
both exploited for interpolation.

3.1. The Tensor-guided Interpolation Problem

Based on the BTD model in (4), we consider to construct a
model f (r)(z) for the componentSr such that f (r)(z) benefit
from the low-rank structure of Sr, in addition, we also need
to estimate the power spectrum φ(r) to fit the measurement
data γ(k)

m .
Here, we adopt a segmented polynomial model for

f (r)(z). Specifically, we construct R polynomial models
f

(r)
ij (z), r = 1, 2, . . . , R, for each grid cell (i, j) centered



at cij . Without loss of generality (w.l.o.g.), a second order
Taylor polynomial model is given as follows

f
(r)
ij (z) =α

(r)
ij + β

(r)T
ij (z − cij)

+ (z − cij)TB
(r)
ij (z − cij) (5)

where θ(r)
ij = [α

(r)
ij , (β

(r)
ij )T, (vec(B

(r)
ij ))T]T ∈ R7 is a col-

lection of model parameters for the propagation field of the
rth source and grid cell (i, j), vec(A) represents the vector-
ization ofA.

To estimate the parameters θ(r)
ij in f (r)

ij (z), we then for-
mulate a least-squares local polynomial regression problem
based on the measurement model (3) as follows:

minimize
{θ(r)

ij }

M∑
m=1

∑
k∈Ωm

(
γ(k)
m −

R∑
r=1

f
(r)
ij (zm)φ

(r)
k

)2

Fij(zm)

(6)

where Fij(z) , F ((z − cij)/b) is a kernel function with a
parameter b to weight the importance of the measurements.
A possible choice can be the Epanechnikov kernel F (u) =
max{0, 3

4 (1− ||u||2)} [19].
A global model f (r)(z) can be constructed based on a

number of local models f (r)
ij (z) on selected cells (i, j) ∈ Ω.

As a result, the cost function for the global model f (r)(z) can
be written as

l(f) =
∑

(i,j)∈Ω

lij(θij ,Φ)

where θij = [θ
(1)
ij · · ·θ

(R)
ij ] ∈ R7×R, Φ = {φ(r)

k }, and lij(·)
is the cost function in (6).

The BTD suggests that when one samples f (r)(z) over
N1 ×N2 grid points {cij}, the resulting matrix may be low-
rank. We thus propose the following tensor-guided interpo-
lation formulation to impose the low-rankness for the global
modelf :

minimize
{θij ,Φij},{Sr}

l(f) +
ν

2

∑
(i,j)

R∑
r=1

(f
(r)
ij (cij)− [Sr](i,j))

2

+ µ

R∑
r=1

‖Sr‖∗ (7)

where ‖ · ‖∗ represents the nuclear norm. As a result, the
regression model f not only needs to fit the measurement data
γ

(k)
m via minimizing the cost lij(·) in (6) but is also penalized

by the rank of Sr via the second and the third terms in (7).

3.2. Alternating regression and singular value threshold-
ing

We propose to employ an alternating regression and singular
value thresholding method to handle the tensor-guided inter-
polation formulation (7). For the convenience of expression,

we write (7) into the matrix form as follows:

minimize
{θij},Φ,{Sr}

∑
(i,j)

‖Wij(vec(Γ)− D̃ijθij)‖22 + ν×

∑
(i,j)

R∑
r=1

(eT
rθij − [Sr](i,j))

2 + µ

R∑
r=1

‖Sr‖∗ (8)

where xm = [1, (zm−cij)T, vec((zm−cij)(zm−cij)T)T] ∈
R1×7 , Dm,k = [xmφ

(1)
k , · · · ,xmφ(R)

k ] ∈ R1×7R, Dk =

[DT
1,k,D

T
2,k, ...,D

T
M,k]T ∈ RM×7R, D̃ij = [DT

1 ,D
T
2 , · · · ,

DT
K ]T ∈ RMK×7R,wij = [w1(cij),w2(cij), · · · , wM (cij)],

wm(cij) =
√
Fij(zm),Wij = diag(1T⊗wij) ∈ RMK×MK ,

‘⊗’ is Kronecker product, 1 ∈ RK is all 1’s vector, diag(x) is
a diagonal matrix whose diagonal elements are the entries of
vector x, Γ(m, k) = γ

(k)
m ∈ RM×K , and er is a unit vector

with the (7× (r − 1) + 1)th entry equals 1.
To solve (8), we can update φ(r)

k and θij through regres-
sion and update Sr using singular value thresholding. Based
on the updated values ofSr and φ(r)

k , we can solve the follow-
ing weighted least-squares problem for obtaining the value of
parameter θij .

minimize
{θij}

∑
(i,j)

‖Wij(vec(Γ)− D̃ijθij)‖22

+ ν
∑
(i,j)

R∑
r=1

(eT
rθij − [Sr](i,j))

2 (9)

Note that the problem (9) is unconstrained convex problem.
Hence, we can find the solution by setting the first order
derivative of (9) to zero and get:
θ̂ij = (D̃T

ijWijD̃ij+ν
∑R
r=1 ere

T
r)
−1(D̃T

ijWijvec(Γ)+

ν
∑R
r=1 er[Sr](i,j)).

Similarly, we can update φ(r)
k by weighted least-squares

problem based on the updated values ofSr and θij as follows:

minimize
{φ(r)

k }

∑
(i,j)

M∑
m=1

K∑
k=1

(
γ(k)
m − fijφk

)2

Fij(zm) (10)

where fij = [f
(1)
ij , · · · , f

(R)
ij ] and φk = [φ

(1)
k , ..., φ

(R)
k ]T. A

closed-form solution is obtained:
φ̂k = (

∑
(i,j)

∑M
m=1 f

T
ijfijFij(zm))−1

∑
(i,j)

∑M
m=1

γ
(k)
m fT

ijFij(zm).

With the θij and φ(r)
k updated by solving (9) and (10), we

can update Sr through solving the following low-rank matrix
completion problem:

minimize
{Sr}

∑
(i,j)

R∑
r=1

(eT
rθij − [Sr](i,j))

2 + µ

R∑
r=1

‖Sr‖∗. (11)
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Fig. 1. Reconstruction NMSE versus M

Based on the low-rank property, we assume the rank 0 ≤ l ≤
min(N1, N2) of Sr. Then, using the singular value threshold-
ing algorithm, the solution is Ŝr = UlSµ(Σl)V

T
l where the

soft-thresholding operator Sµ(Σ) = diag[(σ1−µ)+, · · · (σl−
µ)+], (x)+ = max(0, x), σl represents singular value, and
Ψ = UlΣlV

T
l where Ψ is constructed based on eT

rθij .
The alternating regression and singular value thresholding

algorithm holds convergence property [20]. Finally, we can
obtain the power spectrum from Ĥ =

∑R
r=1 Ŝr ◦ φ̂(r).

4. NUMERICAL RESULTS

We adopt model (3) to simulate the power spectrum map in
an L×L area for L = 300 meters, where gr(d) = Pr(C0/d)2

follows Friis transmission equation, d =
√
x2 + y2 repre-

sents the distance from the source, (x, y) is the coordinate.
We choose the parameter Pr = 1W, C0 = 2 for illustra-
tive purpose. Other values are broadly similar. The power
spectrum φ

(r)
k is generated by φ(r)

k =
∑2
i=1 a

(r)
i sinc2(k −

f
(r)
i /b

(r)
i ), where a(r)

i ∼ U(0.5, 2), f (r)
i ∈ {1, · · · ,K} is

the center of the i-th square sinc function, b(r)i ∼ U(2, 4) and
K = 20. The sensors are distributed uniformly at random
in the area to collect the signal power γ(k)

m . The shadowing
component in log-scale log10ζ is modeled using a Gaus-
sian process with zero mean and auto-correlation function
E{log10ζ(zi)log10ζ(zj)} = σ2

s exp(−||zi − zj ||2/dc), in
which correlation distance dc = 30 meters, shadowing vari-
ance σs = 1. The ε̃ follows Gaussian distribution N (0, σ2),
we choose σ = 1.

We employ the normalized mean squared error (NMSE)
of the reconstructed power spectrum map for performance
evaluation. Let NMSE = ||Ĥ − H||2F /‖H‖2F . The per-
formance is compared with the following baselines that are
recently developed or adopted in related literature. Baseline
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Fig. 2. Reconstruction NMSE versus σs

1: Thin plate spline (TPS) [21]. Baseline 2: k-nearest neigh-
bor local polynomial interpolation (k-LP) [22]. Baseline 3:
low-rank tensor completion (LRTC) [23]. Baseline 4: SCISP-
LL1 [17], we first perform TPS, then, the uncertainty is de-
rived and imposed as the restriction on the BTD method.

We quantify the power spectrum map reconstruction per-
formance of the proposed schemes under different number of
measurements M = 43–96 of sampling rate 5%–10% with
fixed resolutionN = 31 and number of sourcesR = 2. Fig. 1
shows that that the proposed method outperforms the baseline
methods with more than 10% improvement in the reconstruc-
tion accuracy when the sampling rate is larger than 6%. The
worse performance of low-rank tensor completion is due to
the off-grid sparse observations. The worse performance of
TPS and k-LP is due to the lack of the ability to exploit the
correlation property in the spectral domain. The SCISP-LL1
is similar to the proposed method when the sampling rate is
5%–6%, but the performance increases slowly with M in-
crease. Because it does not exploit the correlation property
when using the TPS interpolation.

We also quantify the reconstruction performance of the
proposed schemes under different shadowing variance σs =
1–6 under sampling rate 10%. Fig. 2 demonstrates the per-
formance of the proposed method outperforms the baseline
methods with more than 8% improvement under the shadow-
ing variance σs = 1–6.

5. CONCLUSION

In this paper, we propose an off-grid tensor-guided interpo-
lation. We use a segmented polynomial model to handle the
off-grid measurements and the nuclear norm regularization to
capture the low-rank property of each source. Then, we de-
velop an alternating minimization algorithm. The numerical
results show the superiority of the proposed method.
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