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ABSTRACT

Herein, the problem of non-parametric source localization
based on signal strength measured at different sensor loca-
tions is examined. A recently developed matrix-based method
is considered. This method first arranges the measurements
into an observation matrix based on a uniform grid defined
in the target area and the sensor locations, and then exploits
sparse matrix processing techniques to localize the source.
This paper finds that the localization performance degrades
when the spatial pattern of the sensors is highly non-uniform,
and the uniform grid formation is only a suboptimal solution.
Rather, the grid should be optimized according to the specific
sensor topology. With the insight from the Cramér-Rao bound
(CRB) analysis of matrix completion, a clustering problem is
formulated to optimize the grid. It is demonstrated that with
grid optimization, both the matrix completion and the source
localization performance can be significantly improved. The
proposed strategy is robust under inhomogeneous sensor
topology and substantially outperforms weighted centroid
localization (WCL) algorithms.

Index Terms— Grid optimization, matrix completion,
source localization, clustering, unimodality

1. INTRODUCTION

This paper studies non-parametric source localization
based on coarse sensor measurements, where there is no
propagation model to exploit and the characteristics of the
signal emitted from the source is unknown.

Such a problem is motivated by the demands of localizing
a target from coarse measurement signals [1,2]. For example,
in wireless sensor networks, a malfunctioning node or a jam-
mer may degrade the network performance, and the network
may want to localize the node, but only side information is
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available, such as packet drop rate observed at each sensor
node. In underwater localization, it is very difficult to deter-
mine the propagation characteristics, such as the sound speed
and the path loss exponent, of acoustic signals in the time-
varying water environment. In these scenarios, it is difficult
to learn a parametric model for localization.

There exist some classical non-parametric source local-
ization methods. First, it might be possible to first learn a
model using data-driving approaches, and then jointly per-
form model-based localization, for example, using kernel
regression and support vector machines [3–5]. Yet, these
methods require much data and are sensitive to the choice
of kernels. Second, much existing work focuses on WCL
algorithms. The core idea is to estimate the source location
as the weighted location of the sensors, where the weights
can be heuristically designed as an increasing function of the
strength of the signals received at each sensor [6–12]. How-
ever, it is non-trivial to pick an appropriate weighting scheme,
and moreover, it is also known that WCL methods suffer from
significant bias when the source locates away from the cen-
troid of the sensor networks or when the sensors are spatially
distributed in a highly non-uniform pattern [13, 14].

This paper tackles the issue of the inhomogeneity of the
sensor topology for non-parametric source localization. In
practice, the sensors are usually deployed in a non-uniform
pattern. To address such inhomogeneity, we define non-
uniform grid in the target area, and optimize the spacing of
the grid according to the sensor topology. The measurements
obtained at each sensor position are arranged into an ob-
servation matrix defined according to the non-uniform grid,
and subsequently, the source location is estimated by matrix
completion followed by peak localization of the dominant
singular vectors of the completed observation matrix [15,16].
This method only exploits the structural property that the sig-
nal strength decreases as the distances increases. Our results
confirm that the proposed method is robust to the uncertain
propagation environment and the inhomogeneity of the sensor
topology.

Our contributions: First, we derive the CRB of matrix
completion to analyze how the sensor topology and the grid
formation would together affect the performance of the ma-
trix completion, which is a critical step in matrix-based source



localization. Second, we design a clustering problem to opti-
mize the grid formation such that the matrix completion error
is to be reduced. Finally, we perform numerical experiments
to confirm that the matrix-based source localization under the
optimized grid is indeed robust over various levels of inhomo-
geneity of sensor topologies, and the proposed strategy signif-
icantly outperform the WCL algorithm.

Relation to prior work: It is known that WCL meth-
ods suffer from large bias due to inhomogeneity of the sen-
sor topology and source location being away from the cen-
ter in [13]. Existing work developed mean-shift algorithms
in [10] and a sensor selection approach [14], but their perfor-
mance is sensitive to the heuristic choice of algorithm param-
eters. Our prior work developed matrix-based source local-
ization methods [16, 17], but the methods require prescribed
uniform grid to form the observation matrix and it was not
known how to optimize the grid.

2. SYSTEM MODEL

2.1. The Non-parametric Localization Problem

Consider an active source located at s ∈ R2. The signal emit-
ted from the source is detected by M sensors with known
locations zm ∈ R2, m = 1, 2, . . . ,M , deployed randomly in
an L×L area. The strength of the signal received by the mth
source is given by

γm = f(d(s, zm)) + ξm

where d(s, z) = ‖s − z‖2 describes the distance between
the source at s and the sensor at z, f(d) describes the sig-
nal strength degradation in terms of distance d, and ξm is a
random variable that captures the measurement noise. The
problem is to estimate the source location s based on the mea-
surements {(zm, γm)} from the M sensors.

The challenge of such a source localization problem is
that the propagation function f(d) is unknown, except for a
general property that f(d) is a decreasing function of the dis-
tance d.

2.2. Matrix-based Source Localization

First, discretize the target area into N rows and N columns.
Construct a matrix H ∈ RN×N , whose (i, j)th entry is given
by Hij = γm if the mth sensor locates in the (i, j)th grid.1

The parameter N is chosen such that each row and each col-
umn have at least one measurement.

Second, the missing value of H can be found using ma-
trix completion techniques. One possible way to complete H
is to find the solution to the following convex optimization

1When there are more than one sensor locating in the same grid, then Hij

can be taken as the mean of these sensor measurements γm.

Fig. 1. Sensor topologies (blue circles) with different levels of
inhomogeneity [18]. Uniform-grid-based or WCL algorithms
would suffer from huge large bias for estimating the source
(red triangle).

problem [16, 19]:

minimize
X∈RN×N

‖X‖∗

subject to Xij = Hij , ∀(i, j) ∈ Ω

where ‖X‖∗ denotes the nuclear norm of X and Ω denotes
the set of matrix entries (i, j) that are observed in H.

Then, it is known that the completed matrix H̄ is approxi-
mately unimodal. Here, a vector u is a unimodal vector if the
entries ui ≥ 0 first increase and then decrease from i = 1 to
N ; moreover, a matrix H is unimodal if all its row and col-
umn vectors are unimodal. Consider a noise-free reference
matrix H defined as Hij = f(d(s, cij)), where cij is the
center location of the (i, j)th grid. Then, H̄ is a noisy version
of the reference matrix H . It has been shown in [16] that H
is unimodal, and in addition, the left and right dominant sin-
gular vectors are also unimodal with the peak locations being
the source locations in the x-axis and y-axis, respectively.

As a result, the final step is to compute the dominant left
and right singular vectors u and v, respectively, of H̄, and
to perform peak localization of the approximately unimodal
vectors u and v. Specifically, denote the x coordinates of
the grid centers as xc = (xc

1, x
c
2, . . . , x

c
N ), and the y coordi-

nates as yc = (yc
1, y

c
2, . . . , y

c
N ). Then, the peak localization

of a vector u is to find a non-parameteric method to first in-
terpolate the N -point vector u along the coordinates xc to
obtain a continuous function ũ(x) and then to find the maxi-
mizer x̂ = arg maxx ũ(x). In this paper, we use an estimator



presented in [16] that exploits the unimodality of u for peak
localization. A similar method is applied to find ŷ from the
right dominant singular vector v and the y coordinates yc of
the grid. The source location estimate is given by ŝ = (x̂, ŷ).

A critical unsolved issue in the above matrix-based local-
ization is the formation of the grid. If, for a certain grid, there
is too few observation in one of the row or column in H as
shown in Fig. 1, then there could be large matrix completion
error that eventually deteriorates the source localization per-
formance. This paper proposes to optimize the grid positions,
i.e., xc and yc according to the sensor topology {zm}.

3. NON-UNIFORM GRID OPTIMIZATION FROM
SENSOR TOPOLOGY

3.1. Cramér-Rao Bound Analysis for Matrix Completion

An intuitive guideline to optimize the grid coordinates xc and
yc is to form a desirable observation pattern for the sparse
matrix H such that a completed matrix H̄ could be obtained
in a higher accuracy. Towards this end, we first analyze the
CRB for unbiased low-rank matrix estimators H̄(γ), where
γ = {γm} is the sensor measurement data.

Consider γ to be distributed as N (Avec(H),Σ), where
A ∈ Rm×N2

is an indicator matrix with Am,k = 1 if the
mth sensor measurement is mapped to the kth entry in the
vectorized observation matrix vec(H), i.e., the mth sensor is
mapped to the (i, j)th entry of H which corresponds to the
kth entry of vec(H). In addition, Am,k = 0, otherwise. It has
been shown in [20] that E{‖H − H̄(γ)‖2F} is lower bounded
by

Γ(H) ,max

{
tr
{

[(IN ⊗U0)TATΣ−1A(IN ⊗U0)]−1
}
,

tr
{

[(V0 ⊗ IN )TATΣ−1A(V0 ⊗ IN )]−1
}}

(1)

where U0 = [u1,u2, . . . ,ur] is a matrix that contains the r
dominant left singular vectors of the desired reference matrix
H given rank(H) = r, V0 = [v1,v2, . . . ,vr] is the matrix
for the dominant right singular vectors, and ⊗ denotes the
Kronecker product.

Note that if the matrix H concentrates its energy mostly
at its first dominant singular vector pair, then rank-1 ap-
proximation can be applied to H and U0 ≈ u1, V0 ≈
v1. The CRB in (1) can be approximated as the maxi-
mum between tr{[(IN ⊗ u1)TATΣ−1A(IN ⊗ u1)]−1} and
tr{[(v1 ⊗ IN )TATΣ−1A(v1 ⊗ IN )]−1}

Denote m = M(i, j) as a mapping which indicates that
the (i, j)th entry of H is obtained from the mth measurement
γm. Denote the (m,m)th element of Σ as σ2

M(i,j). Since
the sensor measurements γm and the deployment locations
zm are considered independently, the off-diagonal elements
of Σ are considered to be zero. As a result, an equivalent

experssion of (1) can be obtained as

Γ(H) ≈ max

{ N∑
i=1

( ∑
j:(i,j)∈Ω

u1j

σ2
M(i,j)

)−1

,

N∑
j=1

( ∑
i:(i,j)∈Ω

v1i

σ2
M(i,j)

)−1
}

(2)

where u1j is the jth element of the dominant singular vector
u1 and v1i is the ith element of v1. The above expression
is computed in a straight-forward way from (1) using rank-
1 approximations and by associating the indicator matrix A
with the observation set Ω. The detail steps are omitted here
due to the page limit.

Although it is difficult to directly optimize (2) as u1

and v1 are not available, the matrix structure observed from
(2) can be exploited. First, it is required to have at least
one observation in each row or column, and otherwise, ei-
ther term in (2) will become too large. Such a property
provides some guideline on the choice of the matrix di-
mension N . Second, it is also desired to reduce the noise
term σ2

M(i,j), which comes from two factors: (i) the mea-
surement noise ξM(i,j), and (ii) the discretization noise
f(d(s, zM(i,j))) − Hij due to not measuring at the grid
center cij = (xc

i, y
c
j), where Hij = f(d(s, cij)) and recall

that Hij = γM(i,j) = f(d(s, zM(i,j))) + ξM(i,j). Note that,
since f(d) is a decreasing function of d, reducing the distance
‖zM(i,j) − cij‖2 reduces the noise variance σ2

M(i,j). Such an
observation motivates our grid optimization that minimizes
the distance from the sensor locations to the corresponding
grid centers.

3.2. Grid Optimization

Recall thatM(i, j;xc,yc) maps themth sensor measurement
at zm to the (i, j)th entry of H according to the grid forma-
tion defined by the x and y coordinates xc and yc, respec-
tively. UsingM(i, j) for brevity and aiming at a minimum to-
tal sensor-to-grid-center distance, the grid optimization prob-
lem can be formulated as follows

minimize
{xc

i},{yc
j}

∑
i,j

∑
m∈M(i,j)

‖zm − (xc
i, y

c
j)‖. (3)

Solving problem (3) is generally difficult, but the problem
can be decomposed into an x-subproblem and a y-subproblem
if L1-norm distance is considered:

minimize
{xc

i}

N∑
i=1

∑
m∈Ri

|zm,1 − xc
i| (4)

minimize
{yc

j}

N∑
i=1

∑
m∈Ci

|zm,2 − yc
j | (5)
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Fig. 2. Matrix completion error substantially decreases under
the adaptive grid formation.

where (zm,1, zm,2) represents the xy coordinates of zm,
Ri = {m : |zm,1 − xc

i| < |zm,1 − xc
k|,∀k 6= i} is the

subset of sensors that should be assigned to the ith row ac-
cording to the shortest L1-distance rule, and Cj = {m :
|zm,2 − yc

j | < |zm,2 − yc
k|,∀k 6= j} is the subset of sensors

that should be assigned to the jth column according to the
shortest L1-distance.

Problem (4)–(5) essentially resembles two one-dimensional
clustering problems based on the L1 metric. A widely known
algorithm to solve the clustering problems (4)–(5) is the K-
means algorithm, which iteratively performs the following
two steps until convergence:

• Assignment step: Given row coordinates {xc
i}, assign

each sensor m to the corresponding set Ri, if the x-
coordinate zm,1 of zm satisfies |zm,1 − xc

i| < |zm,1 −
xc
k|, ∀k 6= i. Compute the column assignment Cj based

on the y-coordinate zm,2 in a similar way.

• Averaging step: Based on the assignments Ri, update
the row coordinates of the grid as xc

i = 1
|Ri|

∑
m∈Ri

zm,1.
Update the column coordinates yc

j based on Cj in a sim-
ilar way.

It is well-known that the K-means algorithm always con-
verges and the iterate monotonically decreases the objectives
(4)–(5). As a result, if one uses the uniform grid formation to
initialize K-means, then the K-means solution must generate
a grid formation with total sensor-to-grid-center distance no
larger than the uniform formation.

4. NUMERICAL RESULTS

We consider localizing an active underwater source in an L×
L area where L = 2 kilometers. The sensors collect the en-
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Fig. 3. Localization error under various sensor topology.

ergy emitting from the source and the measurement is simu-
lated as γ = (1 + d1.5A(f)d)−1 + ξ where 10log10A(f) =
0.11f2/(1+f2)+44f2/(4100+f2)+2.75×10−4f2+0.003
where f = 5 kHz, d is the distance from source to the loca-
tion of the sensor, and ξ ∼ N (0, σ2) is to model the noise
with σ = 3 dB.

The simulation is performed for adaptive grid method (our
proposed method), uniform grid method and WCL method
which serves as the baseline. In the WCL method, ŝWCL =∑M

m=1 wmzm/
∑M

m=1 wm is used to estimate the location of
the source, where wm = γm serves as the weight.

Fig. 2 compares the matrix completion error of our pro-
posed method to uniform grid method for M = {60, 100}
sensors under different level of inhomogeneity. The results
demonstrate that the proposed method outperforms the uni-
form method under ALL levels of inhomogeneity.

Fig. 3 shows the localization error with respect to differ-
ent inhomogeneity levels of sensor topology and each sensor
topology contains M = {60, 100} sensors. The dimension of
the constructed grid was chosen to be N = 15. Our proposed
method demonstrates an improvement in the localization ac-
curacy compared to the uniform grid method and the WCL
method under ALL levels of inhomogeneity.

5. CONCLUSIONS

In this paper, we proposed a grid optimization method for
source localization with the knowledge of sensor deployment.
Based on our derivation of CRB for the matrix completion er-
ror, an adaptive grid formation method was developed. Nu-
merical results show that our proposed method substantially
improves the localizaiton accuracy under different inhomo-
geneity levels of sensor topologies and the proposed method
significantly outperforms WCL schemes.
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