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ABSTRACT
This paper develops a regression assisted matrix completion
method to reconstruct the propagation field for received signal
strength (RSS) based source localization without prior knowl-
edge of the propagation model. Existing matrix completion
methods did not exploit the fact that the uncertainty of each
observed entry is different due to the reality that the sensor
density may vary across different locations. This paper pro-
poses to employ local polynomial regression to increase the
accuracy of matrix completion. First, the values of selected
entries of a matrix are estimated via interpolation from local
measurements, and the interpolation error is analyzed. Then,
a matrix completion problem that is aware of the different
uncertainty of observed entries is formulated and solved. It
is demonstrated that the proposed method significantly im-
proves the performance of matrix completion, and as a result,
increases the localization accuracy from the numerical results.

Index Terms— Propagation field reconstruction, source
localization, local polynomial regression, matrix completion,
uncertainty

1. INTRODUCTION

RSS based active source localization is an essential problem
with many applications [1, 2]. Existing approaches are usu-
ally based on the assumption or estimation of a propagation
field. For example, [3, 4] assumed that the source energy de-
cays proportional to the inverse of the squared distance. Thus,
the source location can be found via exploiting the estimated
propagation model.

However, it is generally difficult to characterize a model
for a signal propagation field. For radio signals in an urban
environment, the urban structure shapes signal reflection and
diffraction, creating an environment-dependent propagation
field. For acoustic signals in underwater communication, the
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energy decay law varies significantly with respect to several
factors such as temperature, ocean current, and water salin-
ity. Some existing approaches for based source localization
under harsh environments employ machine learning methods
to construct the propagation field implicitly. For example, [5]
and [6] respectively used kernel regression and support vector
machine for source localization, where the kernel functions
may serve as a proxy of the propagation field. However, these
methods may either require a large amount of data or be sen-
sitive to the choice of kernel functions. Other approaches use
weighted centroid localization (WCL) [7–9] techniques to es-
timate the source localization as a weighted sum of the sensor
locations where the weights depend on the sensor measure-
ments. However, this method may suffer from a large bias due
to the non-uniform distribution of the sensors with respect to
the source location.

This paper focuses on reconstructing the propagation field
with the aim of source localization in harsh environment with
no prior knowledge of the propagation law. Related methods
can be mainly put into two categories. Classical methods in-
clude Kriging [10,11] and local polynomial regression [12] to
interpolate the entire propagation field from a number of sam-
ples. While these interpolation-type methods perform well in
the region with dense samples, they can perform badly in a
local area with sparse samples. These methods do not exploit
the structural property of a propagation field, where the closer
to the source, the stronger the signal, and they are not suitable
for source localization as the ultimate goal. The other cate-
gory of methods are based on matrix completion. They form
a sparse matrix based on the sensor measurements at differ-
ent locations, and the missing values are found by solving
a sparse matrix completion problem assuming that the ma-
trix is low rank due to the structural property of the propaga-
tion [13, 14]. However, it may not be straightforward to per-
form matrix completion. The alternating least square method
(ALS) [15, 16] and the fixed point continuation with approxi-
mate SVD (FPCA) method [17] require the knowledge of the
matrix rank, and [18,19] are not aware of measurement noise
for each specific entry when performing nuclear norm mini-
mization method.

In this paper, we study noise aware matrix completion by
exploiting local polynomial regression for the formation of



the sparse matrix. Specifically, for a local area with dense
measurements, an observed entry of a sparse matrix is formed
via polynomial regression; on the other hand, for a local area
with sparse measurement, it yields a missing value. With such
a strategy, we formulate a new matrix completion problem
that is aware of the different uncertainty on each observed en-
tries. Our results confirm that the proposed regression assisted
matrix completion approach achieves smaller mean squared
error (MSE) in matrix completion error, which implies a bet-
ter reconstruction of the signal propagation field, leading to a
higher accuracy in non-parametric source localization.

2. SYSTEM MODEL

2.1. Source Localization via Matrix Formation

Consider an active source located at s ∈ D ⊂ R2. The signal
emitted from the source is detected byM sensors with known
locations zm ∈ R2, m = 1, 2, . . . ,M , randomly deployed in
an L × L area D. The strength of the signal received by the
mth source is given by

γm = g(d(s, zm)) + εm

where d(s, z) = ‖s − z‖2 describes the distance between
the source at s and the sensor at z, g(d) describes the RSS
in terms of the propagation distance d, and εm is a random
variable with zero mean and variance σ2.

However, the propagation model g(d) is unknown, except
that g(d) is believed to be decreasing in distance d. There-
fore, we propose to estimate the source location s by first re-
constructing the propagation field g(d(s, zm)) using matrix
completion methods; then, the source location can be esti-
mated by the peak localization of the matrix. The general
procedure can be described as follows [13, 14].

Discretize the target area D into N rows and N columns
which results in N2 grid cells in total. Construct a matrix
Ĥ with the entries representing the estimates of the signal
strength measured at the corresponding grid cells. Specifi-
cally, let cij be the center location of the (i, j)th grid cell.
Then, Ĥij is constructed as the estimation of the received
signal strength g(d(s, cij)) at location cij . In prior stud-
ies [18, 20], it has been found that if the estimations are per-
fect, i.e., Ĥ is a complete matrix and its entries satisfy Ĥij =

g(d(s, cij)), the matrix Ĥ , which represents the discretized
propagation field g(d(s, z)), is likely low rank; moreover,
the dominant singular vectors u1 and v1 of Ĥ are unimodal,
and the peak locations of u1 and v1 respectively represent
the x-position and y-position of the source s. Here, a vector
u = (u1, u2, ..., uN ) is unimodal if its entries first increase
and then decrease, u1 ≤ u2 ≤ · · · ≤ un0

, un0
≥ un0+1 ≥

· · · ≥ uN , for some 1 ≤ n0 ≤ N .

2.2. Matrix Completion under Uncertainty

However, it is challenging to form a complete observation ma-
trix Ĥ since there are just M measurements γm from the M
randomly scattered sensors. Even for M ≥ N2, there may
still be unobserved entries for Ĥij due to the randomness of
the sensor location. Classical methods may perform interpo-
lation for Ĥij based on a subset of sensors in the neighbor-
hood of cij . However, interpolation may not work if there are
too few sensors nearby, and it can be very difficult to choose
an appropriate model for the interpolation since the paramet-
ric form of g(d) is unknown. Recent advance in sparse matrix
completion enables a solution that first forms a sparse matrix
from the grid cells that have sensors, and then fills in the miss-
ing value Ĥij for the grid cells with no sensors. Yet, matrix
completion may not work if there are too few observations in
a row or a column.

This paper proposes to form a complete matrix H̄ using
regression assisted matrix completion and tries to combine the
advantages of local polynomial regression and matrix com-
pletion. First, if there are several sensors located within a ra-
dius b from a grid center cij , then a regression method is used
to estimate Ĥij based on γm from these nearby sensors as il-
lustrated in Fig. 1b. This forms a sparse matrix Ĥ . Second,
a matrix H̄ is completed from Ĥ by solving the following
optimization problem [21]:

minimize
X∈RN×N

‖X‖∗ (1)

subject to |Xij − Ĥij | ≤ ε̄ij , ∀(i, j) ∈ Ω

where ‖X‖∗ represents the nuclear norm ofX and ε̄ij repre-
sents the uncertainty of Ĥij for the (i, j)th grid, and Ω repre-
sents the index set of the observed entries in Ĥ .

While there are a number of formulations for matrix com-
pletion in the literature, the above formulation (1) has the fol-
lowing advantages. First, it does not require the knowledge
of the matrix rank as the ALS method [15, 16] does. Second,
it tries to exploit the knowledge that the observation Ĥij may
contain uncertainty up to ε̄ij .

As a result, it is crucial to choose the right parameter ε̄ij
as it significantly affects the matrix completion performance.
Prior work [18, 19] simply chooses a universal parameter ε̄
for the matrix completion problem (1), which is certainly not
the optimal way. This paper provides a systematic method to
estimate Ĥij and determine an upper bound ε̄ij of the level
of uncertainty. Fig. 1 shows the local polynomial regression
method used in estimating the matrix values.

3. EXPLOITING LOCAL POLYNOMIAL
REGRESSION TO ASSIST MATRIX COMPLETION

3.1. A Local Polynomial Regression Approach for Ĥij

For a fixed source location s, define ρ(z) = g(d(s, z)) for no-
tation simplicity. Consider to approximate ρ(z) in the neigh-



(a) (b)

Fig. 1: (a) Propagation field reconstruction based on local
polynomial regression (b) Sensor measurements (red dots)
within a range of b (grey region) from the grid center cij are
used to estimate Ĥij .

borhood of c using a parametric model ρ̂(z; c). Here, we
focus on small order polynomial models, such as the zero-th
order model

ρ̂(z; c) = α(c) (2)

and the first order model

ρ̂(z; c) = α(c) + βT(c)(z − c) (3)

where the coefficients α(c) and β(c) depend on the approxi-
mation center c.

The coefficients of the local model ρ̂(z; c) are computed
based on the nearby observations γm. It is clear that the ob-
servation that is closer to the approximation center c should
have a larger weight. Therefore, we impose a weight for γm
based on the distance ||zm − c|| as wm(c) = K( ||zm−c||b ),
where K(u) is a kernel function which is, optionally, chosen
as the Epanechnikov function here, and b is the radius of the
observation window [22].

We adopt a least-squares regression approach and the co-
efficients of the local model ρ̂(z; c) are determined as the so-
lution to the following distance-weighted regression problem:

minimize
θ

M∑
m=1

wm(c)
(
γm − ρ̂(zm; c)

)2
(4)

where θ = {α(c),β(c), ...} is set of coefficients of the local
polynomial ρ̂(z; c).

Proposition 1. The solution to (4) under the zero-th order
model (2) is given by

α̂(c) =

∑M
m=1 wm(c)γm∑M
m=1 wm(c)

. (5)

Proposition 2. The solution to (4) under the first order model
(3) is given by[

α̂(c)

β̂(c)

]
= (ZTWZ)−1ZTWγ (6)

where

Z =

 1 (z1 − c)T

...
...

1 (zM − c)T

 ,γ =

 γ1
...
γM

 ,W = diag{wm(c)}.

The zero-th order estimator α̂(c) in (5) resembles the in-
verse distance weighting interpolation for ρ(c) where the first
order estimator (6) is used to analyze the estimation error in
section 3.2. Therefore, we set Ĥij = α̂(cij). Then, a sparse
matrix Ĥ is constructed.

3.2. Characterization of the Uncertainty ε̄ij

We analyze the estimation error for Ĥij under the regression
solution (5) to the zero-th order model.

Define ξij , α̂(cij) − ρ(cij), where α̂ is given in (5).
The bias E{ξij} and the variance V{ξij} can be derived and
summarized in the following theorem.

Theorem 1. The bias and variance of estimation error ξij
under zero-th order local polynomial regression are

E{ξij} =
∇ρ(cij)

∑M
m=1 (zm − cij)wm(cij)∑M
m=1 wm(cij)

+ o(b)

V{ξij} =

∑M
m=1 w

2
m(cij)σ

2∑M
m=1 wm(cij)

∑M
m=1 wm(cij)

where∇ρ(cij) = [
dρ(cij)
dx

dρ(cij)
dy ], and o(b) represents a term

that scales to zero faster than b as b goes to zero.

Proof. (sketch) The result can be derived by applying first-
order Taylor’s expansion to ρ(z) at the neighborhood of cij
and noticing that the residual from the Taylor’s expansion
scales as o(||zm − cij ||) with a quantity ||zm − cij || < b
due to our sampling strategy.

Remark. The∇ρ(cij) which represents the slope of the prop-
agation field can be approximated using the first order model
solution β̂T(cij) estimated in (6). Then, the bias is propor-
tional to the slope of the propagation field. In addition, the
variance is proportional to σ2 and the coefficients becomes∑M

m=1 w
2
m(cij)

(
∑M

m=1 wm(cij))
2 , when w1 = w2 · · · = wM , in which case,

it attains the smallest value.

In the following, we use a 1−δ confidence interval to con-
struct the uncertainty level ε̄ij from the bias and the variance
of the estimation Ĥij .

Define µij =
β̂T(cij)

∑M
m=1(zm−cij)wm(cij)∑M
m=1 wm(cij)

and ν2ij =∑M
m=1 w

2
m(cij)σ

2∑M
m=1 wm(cij)

∑M
m=1 wm(cij)

to represent an estimation of the
bias E{ξij} and variance V{ξij} in Theorem 1.

We roughly approximate all possible values for ξij as in
Gaussian distribution N (µij , ν

2
ij). Construct a confidence
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Fig. 2: MSE of Matrix Completion Versus Different Number
of Sensors

interval for the ξij of the probability 1 − δ which yields
P (−ηδ ≤ ξij−µij

νij
≤ ηδ) = 1 − δ where ηδ = Φ−1(1 − δ

2 ),
and Φ is the cumulative distribution function (CDF) of the
standard normal distribution. Therefore, the 1 − δ confi-
dence interval of ξij is (µij − ηδνij , µij + ηδνij). As a
result, we propose to choose the uncertainty parameter as
ε̄ij = max(|µij − ηδνij |, |µij + ηδνij |).

Up to now, the matrix value Ĥij is estimated and the un-
certainty ε̄ij of Ĥij is constructed. Through solving (1), a
complete matrix H̄ can be generated.

4. NUMERICAL RESULTS

Considering that there is anL×L underwater area withL = 2
kilometers. We deploy M sensors uniformly at random to
measure the RSS emitting from an unknown signal source and
we model the measurements as γ = (1 + d1.5A(f)d)−1 + ζ
where 10log10A(f) = 0.11f2/(1 + f2) + 44f2/(4100 +
f2) + 2.75× 10−4f2 + 0.003 [23] where f = 5 kHz, d is the
distance between the sensor location and signal source, and
ζ is a Gaussian noise with zero mean and standard variance
σ = 0.01.

The simulation is performed for regression assisted
method (proposed), constant uncertainty method [18], ALS
method [15] and WCL method. In the regression assisted
method, we choose a 95% confidence level with δ = 0.05.
According to (online) cross-validation through minimizing
the MSE ρ (cij) − ρ̂ (z; cij) for the polynomial regression,
the window parameter b was set as b = 0.52 (km). In the
constant uncertainty method, we give the uncertainty ε̄ij a
global value, e.g, we set all ε̄ij = 0.01. In the ALS method,
a matrix X is completed through alternatingly minimize
||y − Avec(X)|| with X = LR, we set the rank of X
matrix to be 1 as we found that the ALS baseline performs
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Fig. 3: Localization Error Versus Different Number of Sen-
sors

the best under the rank-1 model. The WCL method computes
ŝWCL =

∑M
m=1 wmzm/

∑M
m=1 wm to estimate the location

of the source, where wm = γm serves as the weight.
Fig. 1 compares the matrix completion error with respect

to different number of sensors M where M = 0.5×N2 with
matrix dimension N varying from 8 to 13. We choose the
integer part of M and the parameter 0.5 was chosen accord-
ing to a cross-validation approach for a good performance
for all schemes. The results demonstrate that the proposed
method outperforms the constant uncertainty method and
ALS method regardless of the number of sensors and di-
mension of matrix with a significant improvement on matrix
completion accuracy.

Fig. 2 shows the localization error with respect to dif-
ferent number of sensors with the same setting as in Fig. 1.
The results show that our proposed method significantly out-
performs the constant uncertainty method, ALS method, and
WCL method, which proves that the local polynomial regres-
sion to estimate Ĥij and uncertainty construction for each Ĥij

really helps with the nuclear norm matrix completion algo-
rithm.

5. CONCLUSION

In this paper, a regression assisted matrix completion method
is proposed to construct a propagation field for non-parametric
source localization. We use a local polynomial regression ap-
proach to estimate the matrix value and perform a bias and
variance analysis to estimate the estimation error which is
used to construct the uncertainty of matrix value. The sim-
ulation results show that our proposed method improves the
matrix completion accuracy which leads to a better localiza-
tion performance.
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