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Abstract—This paper addresses the challenge of reconstructing
a 3D power spectrum map from sparse, scattered, and incomplete
spectrum measurements. It proposes an integrated approach
combining interpolation and block-term tensor decomposition
(BTD). This approach leverages an interpolation model with
the BTD structure to exploit the spatial correlation of power
spectrum maps. Additionally, nuclear norm regularization is
incorporated to effectively capture the low-rank characteristics.
To implement this approach, a novel algorithm that combines
alternating regression with singular value thresholding is de-
veloped. Analytical justification for the enhancement provided
by the BTD structure in interpolating power spectrum maps
is provided, yielding several important theoretical insights. The
analysis explores the impact of the spectrum on the error in
the proposed method and compares it to conventional local poly-
nomial interpolation. Extensive numerical results demonstrate
that the proposed method outperforms state-of-the-art methods
in terms of signal source separation and power spectrum map
construction, and remains stable under off-grid measurements
and inhomogeneous measurement topologies.

Index Terms—Integrated, interpolation, block-term tensor
decomposition, alternating minimization, sparse observations,
power spectrum map.

I. INTRODUCTION

Spectrum maps, or more specifically, power spectrum maps,
enable various applications in wireless signal processing and
communications, such as signal propagation modeling [1],
[2], source localization [3], [4], wireless power transfer [5],
radio resource management [6], channel characterization for
terahertz communications [7], and unmanned aerial vehicle
(UAV) placement and strategy optimization for low-altitude
integrated aerial and terrestrial communications [8], [9]. It has
been a challenging problem in constructing power spectrum
maps. Firstly, measurement data is only available in a limited
locations or along a few routes, but the spatial pattern of the
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power spectrum map can be very complex due to possible
signal reflection and attenuation from the propagation envi-
ronment. Second, the location and the power spectrum of the
signal source can be time-varying, and therefore, the power
spectrum map should be constructed within a limited time
based on limited measurements.

There has been active research on power spectrum map
construction. Traditional interpolation-based approaches con-
struct each map point as a linear combination of nearby
measurements, where the weights can be found using different
methods including Kriging [10], [11], local polynomial regres-
sion [12], and kernel-based methods [13], [14]. Compressive
sensing inspired approaches exploit the fact that the matrix
representation of a power spectrum map has a low-rank struc-
ture, and thus, sparse Bayesian learning [15], [16], dictionary
learning [17] and matrix or tensor completion [6], [18]-[21]
can be applied to interpolate or extrapolate the power spectrum
information at locations without measurements. Recent work
[6] proposed an orthogonal matching pursuit using a tensor
model for 3D spectrum mapping. The approach in [20] re-
constructed the power spectrum map through minimizing the
tensor rank while also enforcing smoothness. Deep learning-
based approaches [22], [23] treated the power spectrum map as
one or multiple layers of 2D images, and neural networks were
trained to memorize the common pattern of these images based
on a huge amount of training data. Furthermore, the sampling
pattern can also be optimized if some prior information on the
propagation field is available. In such a case, uniform sampling
can be strictly sub-optimal, whereas, leverage-score-based or
energy-based sampling may perform better [24], [25].

Many of these approaches were originally developed by
representing the power spectrum map as one or multiple 2D
data layers, for example, each layer representing a 2D power
spectrum map for a specific frequency band. Although most
existing approaches can be directly extended to the case in a
higher dimension, their construction performance substantially
degrades due to the curse of dimensionality unless a special
structure is utilized. To address this issue, recent studies
proposed a block-term tensor decomposition (BTD) model to
exploit the spatial correlation of the power spectrum map at
different frequency bands [26], [27]. The BTD model captures
the property that if a signal from a particular source in a certain
frequency band is blocked at a specific location, it is likely that
signals from the same source at different frequency bands will
also be blocked at that location. In [26], a power spectrum
map was reconstructed using a BTD model where power
spectrum and spatial loss field were constructed separately.
The method in [27] applies a deep neural network to the



tensor decomposition model to learn the intricate underlying
structures.

However, tensor decomposition for power spectrum map
construction has several limitations. First, the assumption of
low-rank properties in matrix or tensor models relies on on-
grid measurements, a condition rarely met in reality due to
physical constraints on sensor placements. Off-grid measure-
ments induce discretization errors that likely destroy the low-
rank property, and consequently, degrade the performance of
matrix or tensor completion. Second, while one can reduce the
grid size to reduce the discretization error, a small grid size
will translate to a large matrix dimension, and this leads to the
identifiability issue as the matrix or tensor can be too sparse
to complete. To address the issue of off-grid measurements,
recent works proposed to joint interpolation with matrix or
tensor completion [28], [29]. The work [28] applied adaptive
interpolation to estimate the values at the grid points, and then,
performed uncertainty-aware matrix completion according to
the estimated interpolation errors. In [29], thin plate spline
(TPS) interpolation was used to construct each layer of the
tensor, followed by BTD to construct the power spectrum map.

However, existing approaches [28], [29] are open loop
approaches, where interpolation and tensor completion are
sequentially performed for different objectives under different
models; but the mesh-grid data created by the interpolation
may not have an ideal BTD structure. Our preliminary work
[30] proposed a closed loop approach to integrate interpolation
and tensor completion, where a tensor structure guided inter-
polation problem was formulated, but by how much the tensor
structure may help the interpolation was not theoretically clear.

This paper aims to construct a 3D data array representing
the spectrum information over a 2D area, based on sparse,
scattered, and incomplete spectrum measurements. A tensor
model is formed, where each slice of the tensor represents
a power spectrum map of one frequency band. To integrate
interpolation with tensor completion, we perform interpolation
framed by the BTD tensor structure, and in addition, the inter-
polation is regularized by the low-rank property of the slices
of the tensor. The BTD model captures the spatial correlation
of the power spectrum maps across different frequency bands
under the large-scale fading, and the small-scale frequency-
selective fading is treated as noise that can be mitigated by
the regression to the local polynomial interpolation model.
The low-rank regularization is to enforce the interpolation
to be aware of the global data structure. Analytical results
are established to understand the gain for the interpolation
under the BTD model. It is found that, at low signal-to-noise
ratio (SNR), the power spectrum map excited by narrowband
sources is easier to construct than the one excited by wideband
sources, whereas, at high SNR, the one excited by a wideband
source with a uniform spectrum is easier to construct. The
reconstruction performance under overlapping spectrum for a
two-source case is also analyzed. Our numerical experiments
demonstrate that the proposed scheme works much better in
separating two sources when they have overlapping spectrums
as compared to state-of-the-art schemes, and the proposed
algorithm is stable under off-grid measurements. An improve-
ment of over 20% in reconstruction accuracy is observed,

regardless of whether the sensors measure the full or sparse
spectrum.

To summarize, the following contributions are made:

o« We propose an integrated interpolation and BTD ap-
proach for constructing power spectrum maps. The
method incorporates an interpolation model with the BTD
structure to exploit the spatial correlation of the power
spectrum maps. A nuclear norm regularization is used
to exploit the low-rank property of the power spectrum
maps.

o We develop an alternating regression and singular value
thresholding algorithm for the integrated interpolation
and BTD problem.

o We establish analytical justification on why the BTD
structure may enhance the interpolation for power spec-
trum map construction, with several important theoretical
insights obtained from the analysis.

« Extensive numerical studies are conducted and show that
the proposed method surpasses existing methods in terms
of signal source separation and power spectrum map
construction, and it is stable under off-grid measurements
and inhomogeneity of the measurement topology.

The rest of the paper is organized as follows. Section II
establishes the signal model and tensor model. Section III
develops an integrated interpolation and BTD approach with
a matrix formulation of the proposed method is provided.
An alternating regression and singular value thresholding
algorithm is developed to solve the proposed method. Section
IV theoretically analyzes the error of the proposed method and
compares it with conventional local polynomial interpolation.
It then numerically discusses low-rank regularization and the
performance of signal source separation. Numerical results are
presented in Section V and conclusion is given in Section VI.

Notation: Vectors are written as bold italic letters a, ma-
trices as bold capital italic letters X, and tensors as bold
calligraphic letters X'. For a matrix X, [X]; j) denotes the
entry in the ith row and jth column of X. For a tensor
X, [X] (k) denotes the entry under the index (i, j, k). The
symbol ‘o’ represents outer product, ‘®’ represents Kronecker
product, and | - || represents Frobenius norm. The notation
o(z) means lim,_,go(z)/x — 0, diag(x) represents a diagonal
matrix whose diagonal elements are the entries of vector x,
and vec(X) denotes the vectorization of matrix X . The sym-
bol E {-} and V {-} denote expectation and variance separately.

II. SYSTEM MODEL
A. Signal Model

Consider that a bounded area D C R? contains R sig-
nal sources. The signals occupying K frequency bands are
detected by M sensors at known locations z,, € D, m =
1,2,..., M. Denote s, € D as the location of the rth source.
Then, the signal power from the rth signal source measured
at the kth frequency band and location z is modeled as

p;(fr)(z) = (g-(d(sy,2)) + (- (2) + ,,]T,k(z)) ¢](€T) (1)

where g,(d(s,, z)) describes the path gain of the rth source
at distance d(s,, z), the function d(s, z) = ||s— z||> describes



the distance between a source at s and a sensor at z, (,.(2)
captures the shadowing of the signal from the rth source,
Nrk(2) ~ N(0,07) is a zero mean Gaussian random variable
to model the fluctuation due to the frequency-selective fading,
and (b,(:) describes the power allocation of the rth source
at the kth frequency band. Note that the values of all these
components are not known to the system.

The aggregated power at the kth frequency band from all
the R sources measured by a sensor located at z,, is denoted
as

R
=S ) e Ve, @)
r=1

where € ~ N(0,02) is to model the measurement noise at
each frequency band, and Q,, C {1,2,..., K} contains the
set of frequency bands that are measured by the mth sensor.
We assume that for each source r, the total power sums to
Zszl qb,(:) = K, and therefore, the SNR is normalized to
K/(Ko?) =1/02, where Ko? is the total noise for the entire
bandwidth.

Consider to discretize the target area D into N; rows and
Ny columns that results in Ny X Ny grid cells. Let ¢;; € D
be the center location of the (4, j)th grid cell. Our goal is to
reconstruct the large-scale propagation field, i.e., the first two
terms in (1)

P (2) = g:(d(sr,2)) + G (2) ®)

at grid points c¢;; and the power spectrum ¢,(€T), k =
1,2,..., K. The reconstructed propagation field model (3)
does not capture the frequency-selective fading 7, .

As a result, from the propagation model (1), the measure-
ment model in (2) can be derived as

R
Y =37 0" (zm)af” + & )
r=1

where €, = Zrm,k(z)@g) +e¢ is a zero mean random variable
that combines the randomness due to the frequency-selective
small-scale fading n,xk(z)(bg) and the measurement noise e.

B. Tensor Model

Let S, € RV XNz pe a discretized form of the propagation
field for the rth source, where the (i,7)th entry is given by
[S,]i.5) = P (cij) € RL. It has been widely discussed in
the literature that for many common propagation scenarios,
the matrix S, tends to be low-rank [1], [26].

Let H € RN1XN2XK e 3 tensor representation of the target
power spectrum maps to be constructed. Based on (1) and (3),
we have [H](; jx) = PO p(r)(Cij)¢§€T) to represent the ag-
gregated power of the kth frequency band from the R sources
measured at location ¢;; exempted from the small-scale fading
component nryk(z)qﬁ;:). Denote ¢ = [¢\"), ..., ¢\7|T € RX
as the power spectrum from the rth source. As a result, the
tensor H has the following BTD structure

R
H=) S 00" (5)

r=1

where ‘o’ represents outer product.

Conventional tensor-based power spectrum map construc-
tion approaches obtain the complete tensor ‘H from the mea-
surement fy?(f ) assuming that *ynf ) are taken at the center of
the grid cell without measurement noise [6], [20]. However,
when the grid cells are too large, corresponding to small
N; and N, it is hard to guarantee that the sensor at z,,
is placed at the corresponding grid center c;;, resulting in
possibly large discretization error. When the grid cells are
small, corresponding to large N; and N, there might be an
identifiability issue as the dimension of the tensor is large.

Recent attempts [28], [29], [31] consider to first estimate
[H](i,j,r) using interpolation methods based on the off-grid
measurements, and then, employ matrix completion or tensor
completion based on the BTD model (5) to improve the
spectrum map construction. However, these methods are open-
loop methods where the property that S,. are low-rank matrices
is not exploited in the interpolation step; consequently, a poor
open-loop interpolation may affect the performance in the
tensor completion step.

III. INTEGRATED INTERPOLATION AND BTD APPROACH

In this section, we propose an integrated interpolation and
BTD approach, where the BTD structure of the tensor model
and the low-rank property of the tensor components are both
exploited for interpolation.

A. The Integrated Interpolation and BTD Problem

Based on the BTD model in (5), we consider to fit a
model f(")(z) to approximate the large-scale propagation
field p(")(2z) of the rth source in (3) from the multi-band
measurements 7,(,’;’ ) by exploiting the structure of the tensor
model ‘H and the low-rank property of the tensor component
S.

Here, we adopt a polynomial model for the propagation
field f(") (z) of the rth source, but note that, other conven-
tional interpolation approaches, including Kriging and kernel
regression, also work with the proposed framework. The global
model f(")(z) for source 7 can be constructed based on a
number of local models fi(;)(z) on selected cells (¢,5) € Z.
Without loss of generality (w.l.o.g.), a second order polyno-
mial model for the (2, j)th grid cell centered at c;; is given as
follows:

1) =al}) + (B (= = eiy)
+ (2 —¢y))' B (z — cy). ©)

We collect the model parameters of the local model

at cell (i,j) for the rth source into a vector
(r () (grT (M\\TIT 7

0, e [ ’(ﬁ% )", (vee(B;;7))'] € R and
9, = [GEj);~~- ;05 )] € R is a collection of model

parameters at cell (¢, ) for all sources.

It follows that, under perfect interpolation that
yields fi(r)(cij) = p"(ciy), we have [H]ujp =
Zf;l fi(jrg(cij) ,(:), which aligns with the BTD tensor
structure in (5). Therefore, a BTD tensor structure guided
least-squares local polynomial regression based on the



measurements ’y,(n) at the location z,, can be constructed

through minimizing the following cost

li;(® u,{w)})
- Z Z ( - Z (T)(zm)%r))zmj(zm). @)

m=1keQ,, r=1

The term k;;(z) £ Kk((z — ¢;;)/b) is a kernel function with
a parameter b to weight the importance of the measurements.
The kernel k;;(2) here assigns weights to the measurements
%(lf ). For those measurements far from the grid center c;;,
the weights are small. Since our purpose is to weigh the
importance of the measurements, a typical spatially smoothing
kernel can be used. A possible choice of kernel function can
be the Epanechnikov kernel x(u) = max{0,2(1 — [|u|[*)}
[12].

The cost function for the global model f can be written as

follows:
PORAC

(1,7)€T

i (o). ®)

The regression model (8) is not aware of the hidden low-
rank property of the propagation field. We thus propose an
integrated interpolation and BTD formulation to impose the
low-rank for the global model f as follows:

SN e -

(i,5)ezr=1

minimize ST](i,j))2

{©:;, {6} {5}

R
+uY 1S ©
r=1
where || - ||« represents the nuclear norm. As a result, the
regression model f not only needs to fit the measurement data
%(7[? ) via minimizing the cost {(-) in (8) but is also penalized
by the rank of S, via the second and the third terms in (9).

B. Matrix Formulation of Integrated Interpolation and BTD

It turns out that the minimization problem (9) has a nice
structure after reformulation with matrix representations.

Denote T, (ci;) = [1, (zm — ¢i;)T, (vec((zm — €ij)(zm —
cij))NTT e R". Then, the polynomial model fi(;')(zm) in (6)
is rewritten as f N (zm) = mL(cij)Gg).

Denote ¢, = [ M ,gR)] € R%, and recall the defini-
tion of @Zj in (7). From (7), we have "1 | )(zm) () —
or @zl (ci;)©;; where ‘®’ is the Kronecker product. The
least-squares local polynomial regression model (7) is rewrit-
ten as follows:

1ij(®ij, {d)](:)})
2
> (%(ff) ¢£®$£@(Cij)@ij) Kij(2Zm).

m keEQm

M

2

M K 2

ZZ k( W - ¢E®wfn(cij)@ij) kij(2m) (10)
m=1k

where 1), indicates the observation status of kth frequency
band at location m, if £ € €,,, we have ¥, = 1, elsewise

Ymi = 0. For the convenience of matrix form formulation,
we denote Y]k = Yimk-

Next, we further rearrange (10) into a matrix form. Denote
Xi; = [z1(cij), x2(cij), s xar(cij)] € R7™M . To concisely
express the mathematical relationships, we first replace the
summation term over m in (10) with its matrix form as
follows:

Z Zwmk(

(g zon) (4 -

T eV
—¢r @ xr (013)613) Kij(Zm)

iu

I
M= T

b @ $7Tn(cij)@ij) )2

3
Il
N
S
i
_

— ¢t XLey)|ls A

M=

£
I
-

where T'(m, k) = m(lf), T'(:, k) and v (:, k) respectively rep-
resent the kth column of I' and . The matrix Q;; is an
M x M diagonal matrix with the mth diagonal element equals
to \/Kij(Zm).

Further, based on (11), we replace the summation
term over k& with its matrix form. Denote ® =
(1.2, -, Prc]€ RF*K . Then, model (11) can be written
as follows:

> [lQidiag(w(

keQm

2
2

k) (T(:, k) — oF © X10,)||

2

= ||WU (VCC(F) — 9

where W;; is an MK x MK diagonal matrix,
Wi =1k ® Qijdiag(vec(q/;)) c RMEXMK

@' 0 X;;0,)|

12)

and I € RE*K is an identity matrix.

From (6), if z = ¢;;, then we have f (cm) = o =
el ®,;, where e, is a unit vector with the (7 X (r—1)41)th
entry equals 1, and all the other elements equal 0. Thus, the
integrated interpolation and BTD problem (9) can be rewritten
as follows:

2

ggfl;)n}lge} Wi (vee(T) — " ® X;rj@ij) Hz
(4,5)€T
R R
+v Y Y (7O =[S ) + iy IS
(i,j)eZT r=1 r=1

subject to [®@];; > 0 (13)

where I' is a collection of received signal strength (RSS)
'yT(,]f ) , @ is the power spectrum, W;; is the diagonal matrix of
weights defined in (12), X;; is a collection of measurement
locations z,,, and S, is a discretized form of propagation field
in (5). The constraint is added because the power spectrum is
non-negative.

C. Alternating Regression and Singular Value Thresholding

It is observed in (13) that given the matrix components
S, and the spectrum variable ®, the objective is a convex
quadratic function in the regression parameters ©;;. Likewise,
given S, and ©;;, (13) is also a convex quadratic function in



®; and moreover, (13) is a convex function in S,.. Therefore,
it is natural to adopt an alternating optimization approach to
solve for the integrated interpolation and BTD problem (13).

Update of ©;;: Given the values of S, and @, the
optimization problem (13) is equivalent to a weighted least-
squares problem as follows:

mirgmize Z HVV” (vec(T) — T » XiTj®¢j)|

ij =
(1,J)€T

—|—VZZ

(i,5)€L r=1

| 2
2

Silugp)? (14

Note that the problem (14) is an unconstrained strictly convex
problem. Hence, the solution can be obtained through setting
the first order derivative of (14) to zero and we get:

0, = (®® X;W2:e" o X, +uZer

x (@ ® X;;Wvec(T

—&—I/Zer ”)

Update of ®: Similarly, given the values of S, and ©;,
the optimization problem (13) is equivalent to a constrained
weighted least-squares as follows:

(15)

C T T 2
minimize Z |Wi; (vee(T') — @" ® X! 0,)) ||2
(i,5)€T
subject to [®];; > 0. (16)
Using the property of Kronecker product vec(AX B)

=(B"®

(BT ® A)vec(X) and vec(AB) = (I @ A)vec(B)
I)vec(A) [32], problem (16) can be rewritten as:
mlmmlze Z (vec(T")
(i,)€T
2

(IK ® (X [gw]?xR)) VGC(@))

2

subject to [®];; > 0 a7

where [©;;]7xr is the reformed matrix form of vector ©;;
with dimension 7 x R.

Note that the mth grid in set Z is a one-to-
one mapping to the (i,j)th grid. Denote Wij =
(Wi s W s Wiz, Zij = Wi (Ix @ (X3[O5]7xr))
and Zij = [Z1;-++ 3 Zm; -+ 5 Zjg)). We reformulate (17)

to make it a general non-negative constrained least-squares
problem as follows:

2
minimize
)

Wi (vec(I‘) - Z~ijvec(¢')>

2

subject to [®];; > 0. (18)

Note that the problem (18) is a strictly convex problem.
Hence, it has a unique optimal solution and a single principal
pivoting algorithm [33] can be applied to solve (18).

Update of S.: Finally, with the ®;; and ® updated through
(15) and (18), the optimization problem (13) is equivalent to a

nuclear norm regularized low-rank matrix completion problem
as follows:

m1n1m1ze E E

Sr} (i,5)eLr=1

R
Sili)? + 1Y 1Skl
r=1
(19)
It is observed that (19) can be equivalently decomposed into
R parallel sub-problems each focusing on an S, as follows:

{ér}. > (/0 —

minimize [Si) i) + 1l Sl (20)
(4,J)€T

Denote the observation matrix ¥ as [¥];; = el ©,;. Then, the
singular value thresholding algorithm can be applied to solve
(20) through the iteration as follows [34]:

(k) _ k-1

S = 8,(v ) k on

Y® =y E-D 4 5Po(w — S
where Y is an intermediate matrix, (k) represents the index
of each iteration, [Pq(X)];; = [X]; if (¢,4) € Q and zero
otherwise, and S, is the soft-thresholding operator which is
defined as follows:

S, (Y1) =U,D,(,)V]
with D,(X,) = diag[(o1 — p)4, - (0, — p)4), B, =
diag[oy, - ,0,], (z)+ = max(0,z), and U,X, VT is the
singular value decomposition (SVD) of Y *~1) where ¢ is
the rank of Y (v=1),

Each sub-problem of (13) is strictly convex and has a unique
solution. Since the overall objective value decreases (or at least
does not increase) with each iteration, and the objective (9) is
lower bounded by 0, the alternating regression and singular
value thresholding algorithm must converge.

Flnally, the power spectrum map is constructed as H =

SIS 000,

IV. PERFORMANCE OF THE INTEGRATED INTERPOLATION
AND BTD APPROACH

This section investigates the performance and the potential
advantage of the proposed integrated interpolation and BTD
approach (9) from three aspects. First, we focus on the least-
squares cost term [( ) by dropping the low-rank regularization
in (9). By analyzing the interpolation error, we show that
the proposed method indeed yields a better accuracy. Then,
we numerically verify that by imposing the low-rank regular-
ization, the reconstruction accuracy can be further improved.
Finally, we discuss how the proposed structure may improve
the identifiability of separating multiple sources compared to
the classical tensor-based approaches.

A. Improvement from the BTD Model

We first show that exploiting the BTD model in (5) can
increase the accuracy of constructing S,.



1) Single Source: Let us start from the case of full spectrum
observation for a single source, where R = 1 and each sensor
measures all the frequency bands, i.e., ¥ in (11) is an all 1’s
matrix. The result can be easily extended to the case where
each sensor only observes a subset of frequency bands.

For the sake of notation simplicity, we omit the superscript
"(r)" and adopt symbols p, f, and so on, to represent p("),
f(), and similar variables. Recall that f;;(c;;) is a model
to approximate p(c;;), and o;; = fi;(c;;) from (6). Define
the interpolation error as §;; = d;; — p(c;;) where G;; is an
estimate of «;.

Assume that the propagation field pi(z) in (1) is third-order
differentiable. Then, if ¢y is available, we have the following
results to characterize the construction error &;; at a point c;;
of the integrated interpolation and BTD approach.

Theorem 1 (Full spectrum error analysis). Let &;; be the esti-
mate obtained from the solution to the integrated interpolation
and BTD problem (14) under v = 0 based on the regression
model (6). The variance & = V{&;;} of the interpolation error

& = Guj — p(cijy) is given by

K 4
2 k=1 Pk o2+ 1 o2
K 2°n K 2 €
(Zk:l ¢i) k=1 Pk
where C({z,},b) is a constant that depends on the sensor
locations z,, and the window size b.

Proof. See Appendix A. O

& = C({zm},b) (22)

It is observed that the variance of the interpolation error §;;
depends on the spectrum @ of the source. An analysis of the
coefficients is given in the following proposition.

Proposition 1 (Impact from the spectrum). The coefficients in
(22) satisfy

K 4
%< (‘I’)é Zk:1¢k2§1
K
(2 92)
with lower bound achieved when ® = (1,1,...,1) and upper
bound achieved when ® = (K,0,0,...,0). In addition,
1 1
— < w(P)E — <=
TR S
with lower bound achieved when ® = (K,0,0,...,0) and
upper bound achieved when ® = (1,1,...,1).
Proof. See Appendix B. O

One can make the following observations. First, the im-
pact from the frequency-selective fading due to the power
allocation of the source is more significant than that from
the measurement noise, in the sense that for o, = o,
we have w (®) < w,(®) for all power spectrum P. The
intuition is that the frequency-selective fading component 7,
is multiplied with the power allocation ¢; in (1) for the
contribution to the measurement in (4), and hence, a power
boost in the kth frequency band also enhances the frequency-
selective fading component.

Second, it follows that equal-power allocation ® =
(1,1,...,1) minimizes the impact of the frequency-selective
fading under the integrated interpolation and BTD approach.
In this case, the fading component can be treated as additional
measurement noise, resulting in a combined noise with vari-
ance 0,27 +02. The more frequency bands that can be measured,
the less impact from the frequency-selective fading.

Third, on the contrary to the impact of the frequency-
selective fading, the noise term prefers a power boost in just
one frequency band. This is because reducing the bandwidth
also reduces the noise power, resulting in an increase in the
SNR.

To summarize, in the high SNR scenario, where the mea-
surement noise power o2 is much smaller than the amount of
the frequency-selective fading on, a wide-band measurement
with equal power allocation is preferred for constructing
the propagation map S,. On the contrary, in the low SNR
scenario, a narrow-band measurement is preferred and all the
power should be allocated to a single frequency band. This is
mathematically summarized in the following corollary.

Corollary 1 (Asymptotic performance). At high SNR, the
uniform spectrum ® = (1,1,...,1) asymptotically minimizes
& as 1/o? — oo, and consequenily, & — Col /K. At low
SNR, the single band measurement under ® = (K,0,0,...,0)
asymptotically minimizes & as 1/0? — 0, and consequently,

gt — CO'EQ/K2

For performance bench-marking, we consider a conven-
tional frequency-by-frequency construction for each pi(z), us-
ing a local polynomial interpolation technique under the same
regression model (6). Specifically, for each k, we construct
pr(z) only based on z, and the measurement of the kth
frequency band 7,(,’: ) using local polynomial regression under
the same parameter b and the kernel function. Likewise, the
spectrum P is available. Denote @E;?) as the estimated power
spectrum py(c;;) at location ¢;;.

Proposition 2 (Interpolation without a BTD model). Let &;; =

K Ak E E A (F
Doy G a! )/K andfmfzk 15( )/Kwheref() EJ)
pr(cij). Under the same assumption as in Theorem 1, the
variance &, = V{&;;} of the interpolation error &;; is given
by

(23)

Ko
&= o2+
(’7 Z¢%K

Proof. See Appendix C. O

) ({zm},0).

It is observed that the impact from the frequency-selective
fading 03] is independent of the spectrum &, which is in
contrast to (22) for the case with the tensor guidance. This
is due to the fact that only the data 'y,(,’f) for the same
frequency band is used. The coefficient Zle 1/(¢2K) of
measurement noise af in (23) is lower bounded by 1 with
lower bound achieved when ® = (1,1,...,1). Note that this
error coefficient Zszl 1/(¢2K) can be arbitrarily large for
an arbitrarily small ¢ in a particular frequency band k. On
the contrary, the construction performance for the integrated



interpolation and BTD approach in (22) is less affected even
¢ = 0 for some k.

To make a more specific comparison, we derive the differ-
ence & — &

Proposition 3 (Interpolation error reduction). Under the same
assumption as in Theorem 1, the proposed integrated in-
terpolation and BTD approach reduces the variance of the
interpolation error by

& — & = ((®)oy + (®)0?) C ({2m},b)

where G, (®) = 2(X,; 626%) /(e ¢3)% and (@) =
S (s 0D/ (G2 K)) ) S, &3

In addition, 0 < ¢,(®) < £ < ¢ (®) where the second
and third inequalities are achieved when ® = (1,1,...,1)
and the inequality in first inequality is achieved when & =
(K,0,0,...,0).

(24)

Proof. See Appendix D. O

It is observed that the integrated interpolation and BTD
approach is always of smaller variance than the conven-
tional frequency-by-frequency local polynomial interpolation.
In addition, the error from the measurement noise is more
significant than that from the frequency-selective fading, in
the sense that for o, = o, we have ¢,(®)o, < ¢(®)o,
because ¢, (®) < £=L <o (®).

Finally, we extend our discussion to the case of sparse
spectrum observation. We assume each sensor m randomly
measures |2, = K’ frequency bands. To simplify the
discussion, we assume the source has equal power allocation
® = (1,1,...,1) over all frequency bands.

Proposition 4 (Sparse spectrum error analysis). Under the
same condition of Theorem 1, the variance &, of the inter-
polation error &;; for the integrated interpolation and BTD
approach is given by

o +052
T C({zm}. ).

Proof. See Appendix E. O

g[:

Proposition 4 verifies that the interpolation performance for
the integrated interpolation and BTD approach depends on the
number of observed frequency bands K’ in each sensor, rather
than the measurement pattern in the frequency domain, i.e.,
different sensors can observe different subsets of frequency
bands. For instance, we may have more measurements for
some frequency bands, while other frequency bands have rare
measurements, and such a heterogeneous situation does not
affect the performance for the integrated interpolation and
BTD approach.

2) Multiple Sources: We demonstrate the result for a two-
source case, where the derivation for R > 2 is straight-
forward, and similar insights can be obtained.

Consider that the two sources occupy K frequency bands.
There are nK frequency bands that are occupied by both
sources where 0 < n < 1 is the overlapping ratio, and
%K distinct frequency bands are occupied by each source

separately. Assume equal power allocation across frequency
bands for each source.

Since the configuration is symmetric, it suffices to analyze
the reconstruction for the rth source, » = 1,2, and we
have &;; = 51.(;'), fg) = &E}l) — p"(c;;). Assume that the
propagation field p,(:)(z) in (1) is third-order differentiable.
Then, if ¢](€T) is available, we have the following results to
characterize the construction error §;; at a point c;;.

Theorem 2 (Spectrum overlap for multiple sources). Let 645;)

be the estimate obtained from the solution to the integrated
interpolation and BTD problem (14) under v = 0 based on
the regression model (6). The variance &, = V{&;;} of the
interpolation error &;; for the integrated interpolation and
BTD approach is given by

£ = (mn)o—i +we(77)062> Cl{zm,b})  ©9)

where w,(n) = (2 —10n? + 10n — 213) /(K (1 — 3n? + 2n)?)
and we(n) = 2(—n — 1)/(K (3n* — 2 - 1)).

In addition, ,(n), @.(n) > 2 with lower bound achieved
when 1 = 0.

Proof. See Appendix F. O

It is found that when n = 0, i.e., there is no overlap of
frequency bands between each source, we have the coefficients
wy,(n) and w(n) to be 2/K, which is consistent with the
results in Theorem 1 for a signal case, where each source
occupies K /2 frequency bands. Increasing the overlapping
ratio 7 also increases the coefficients w,(n) and w.(n) in
(25), leading to a worse performance. When 7 reaches 1, we
will mathematically have the matrix in (43) to be singular, and
the estimation error can be arbitrarily large. In this case, one
cannot separate the two sources.

B. Low-rank Regularization

The nuclear norm regularization in the third term of (9)
provides two benefits: First, it allows sparse interpolation in
the first term I(f), where Z in (8) may only contain a small
set of grids to interpolate, and second, it imposes low-rank of
the propagation field represented by the matrix S,.. Note that
while the interpolation {(f) in (9) exploits the locally spatial
correlation of the propagation field, the low-rank regularization
tries to exploit the global structure, where the signal strength
may decrease in all directions following roughly the same law
as distance increases.

To numerically study the performance gain due to low-
rank regularization, we select two common forms of propa-
gation model. One is under exponential scale (EXP-model)
g(d) = aexp(—d”), with « = 1, 3 = 1.5, h = 0.1, another
is under log-scale (LOG-model) g(d) = a — 8 x logyyd,
with o = 18, B = 5, h = 0.1, where d = /22 + y? + h?
represents the distance from the source at the origin, (x,y) is
the coordinate of the grid cell, and A is the height. We choose
the number of sources R = 1, dimension N = Ny = Ny = 31,
the number of frequency bands K = 20, and the number of
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Figure 1. Comparison of the integrated interpolation and BTD approach

with and without the nuclear nrom low-rank regularization, for parameters
p = 0.01 and p = O respectively.

measurements M = pN? with sampling ratio p = 5% — 10%.
The performance criterion normalized mean squared error
(NMSE) is the same as in Section V.

Fig. 1 compares two schemes, one with the low-rank regu-
larization where p = 0.01 in (19), and the other without the
low-rank regularization where ;= 0. We choose v = 10~ in
(14) for both the two schemes. Fig. 1 shows that the low-rank
regularization can enhance the accuracy in the reconstruction
by more than 10% for both propagation models compared to
the case without regularization under the sparse observations.
It is observed that the proposed scheme with low-rank reg-
ularization outperforms an interpolation scheme without the
low-rank regularization.

C. Identifiability of Multiple Sources with Overlapping Spec-
trum

One important feature of the proposed method is the capa-
bility of identifying multiple sources possibly with overlapping
spectrum. This feature was also exploited by the related works
based on tensor decomposition in the literature [26], [29].
However, the proposed scheme has the advantage that it does
not require a priori knowledge of the rank of S,.. By contrast,
existing schemes based on the BTD model require the rank
information as S, needs to be decomposed into S, = ATBZ"
[26], [29]. Estimating the rank parameter L for the existing
schemes can be challenging, because a small L may lose some
accuracy, whereas, a large L may lead to identifiability issue.

To numerically analyze the identifiability for multiple
sources with overlapping spectrum, we choose the overlapping
ratio n = 0 — 0.6, then, the number of overlapped frequency
bands is K with a total K (1+47)/2 frequency bands observed
of each source. We set ¢,(:) =1, and then normalize ¢(") for
comparison. We choose R = 2, K = 20, p = 5%, other
settings are the same as in Section V. The proposed method
is stable with respect to initialization. For ¢("), we randomly
generate its values and then normalize its [s-norm to 1. For S,
we directly set all values to 0, which is sufficient. Since the
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Figure 2. NMSE of the reconstructed source spectrum ® and the power
spectrum map H versus the spectrum overlapping ratio 7. The proposed
scheme works much better in separating the two sources.
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Figure 3. Reconstruction of the propagation field .S, of each source with the
NMSE. The sources constructed by TPS-BTD tends to be over dispersed,
whereas, the reconstruction of the proposed scheme appears to be more
accurate.

TPS method reconstructs the whole tensor without separating
the source, we only compare the proposed method with the
TPS-BTD baseline in Section V.

Fig. 2(a) demonstrates that the proposed method achieves
more than double the improvement in spectrum @ recon-
struction compared to the TPS-BTD baseline. Furthermore, as
demonstrated in Fig. 2(b), it also provides an enhancement in
power spectrum map H reconstruction exceeding 10%. This
highlights its ability to identify multiple sources, even with
overlapping spectra, compared to the baseline method. The
TPS-BTD method underperforms primarily because selecting
an appropriate rank L is challenging. Fig. 3 displays a clear
visualization of the propagation field S, under n = 0.2 where
there is also an accuracy improvement of more than 10% in
reconstructing S, compared to the baseline method. Fig. 4
shows a visual plot of the reconstructed spectrum @ and
Fig. 5 shows the reconstructed power spectrum map H with
representative frequency bands. Furthermore, recoverability
can also be studied following the techniques derived in [27,
Theorem 2], [35]. Here, we provide numerical experiments on
the recoverability in Section V.

V. NUMERICAL RESULTS

We adopt model (4) to simulate the power spectrum map in
an L x L area for L = 51 meters, where g,.(d) = P,.(Co/d)?
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representative frequency bands.

follows Friis transmission equation, d represents the distance
from the source. We choose the parameter P, = 1W, Cy = 2
for illustrative purpose. Other values are broadly similar. The
number of sources is R = 2. The power spectrum qS is gen-
erated by qﬁ(r) PO a{"sinc®(k— £ /o), where a{") ~
U(0.5,2), f, ( € {1,---, K} is the center of the i-th square
sinc functron, bg ~ U(2,4). The sensors are distributed
uniformly at random in the L x L continuous space to collect
the signal power 'yﬁ,lf ), thus the measurements are likely off-
grid. The shadowing component in log-scale log; ;¢ is modeled
using a Gaussian process with zero mean and auto-correlation
function E{log;,((zi)log,o((2;)} = olexp(—|zi—z;||2/d.),
in which correlation distance d. = 30 meters, shadowing
variance o0 = 4. The SNR is defines as SNR = 'y(k) /€k
where the & follows Gaussian distribution N (0,0?) and o2
is chosen to make the SNR 20dB. We select the parameter
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Figure 6. Reconstruction NMSE of H when observing the full spectrum or
when randomly and sparsely observing part of the spectrum.

b in the kernel function to ensure that it contains at least
My = 14 sensors. This is because the regression model
in (6) contains 12 unknown parameters, and a number of
12 + 2 = 14 measurements will be enough to estimate the
regression model. The index set Z is constructed through
randomly and uniformly selecting among 80% of the grids,
at the same time avoiding scenarios where an entire column
or row of S, is missing

We employ the NMSE of the reconstructed power spectrum
map for performance evaluation. Let the NMSE of tensor H
be ||# — H||%/|H|%. the NMSE of & and S, is of the
same form. The performance is compared with the following
baselines that are recently developed or adopted in related
literature. Baseline 1: Thin plate spline (TPS) [36]. Baseline 2:
Nonnegative matrix factorization-TPS (NMF-TPS), we solve
[T — Sq®"||, where T' € RM*X s the collection of observa-
tions and S € RM*E through NMF. The NMF is realized
based on the successive projection algorithm (SPA) algorithm,
as described in Appendix G of the supplementary materials of
[27]. Subsequently, we use TPS to reconstruct R propagation
fields S, € RN1*N2 from S(,. Baseline 3: TPS-BTD [29], we
first perform TPS, then, the uncertainty is derived and imposed
as the restriction on the BTD method. The performance of
low-rank tensor completion (LRTC) [37] is poor for power
spectrum map reconstruction [26], [27]; therefore, it is not
considered as a baseline.

A. The Influence of Number of Measurements M

We quantify the power spectrum map reconstruction per-
formance of the proposed method under different number of
measurements M = 130 — 260 which is of sampling ratio
p = 5%—10% under fixed resolution N = N; = Ny = 51. We
choose the number of frequency bands being |Q,,| = K = 20
for the full observation case and |{2,,| = K/2 = 10 for the
sparse observation case, separately. For the sparse observation
case, we randomly select the observed frequency bands for the
Sensors.
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Fig. 6 shows the performance of power spectrum recon-
struction under both full and sparse observation scenarios.
It demonstrates that the proposed method is robust when
each sensor only observes random portion of the spectrum.
The proposed scheme achieves over a 20% improvement in
reconstruction accuracy in both cases, which translates to
roughly 50% reduction of the measurements to achieve the
same NMSE performance. A larger M will contribute to a
performance gain of the proposed method. TPS underperforms
because it fails to leverage the correlation property in the fre-
quency domain. TPS-BTD, which relies on TPS interpolation,
also falls short as it does not utilize the correlation property
effectively. The NMF-TPS method executes NMF and TPS
independently without an optimal integration, and the global
TPS method lacks the capability to utilize local information
effectively, resulting in suboptimal performance.

When the number of measurements M increase, the perfor-
mance of the proposed method under the sparse observation
case approaches the full observation case, revealing that ex-
ploit a tensor structure can save the number of measurements
to attain a similar accuracy.

B. The Influence of Non-homogeneous Spectrum Observation

We investigate the influence of the non-homogeneous ob-
servation of spectrum on the performance under the sparse
spectrum observation. In the homogeneous observation, for
each sensor location z,,, we randomly select the |$2,,,| = K/2
frequency bands from the whole bands. As a result, we
will have a similar number of sensor measurements for each
frequency band. In the non-homogeneous case, we still make
that each frequency band £k have a similar number of sensor
measurements. But the difference lies in that for a set of sensor
locations, they are with higher probability to collect the first
K /2 bands, and for another set of sensor locations, they are
with higher probability to collect the last K/2 bands.

To realize this, we separate the sensors locations {z,,} to
two sets Z1, Z5. Then, we choose the weighted sampling

-E-TPS
-B-TPS-BTD

~E-TPS
—p-TPS-BTD

0.08

x NMF-TPS] NMF-TPS]
5 0.06 —#—Proposed —#—Proposed
€3]
%)
P
7. 0.04)

0.02 . 0.04

1 2 3 4 5 170 20 30 40 50
Shadowing variance oy Correlation distance d.

(@ (b)

Figure 8. Reconstruction NMSE of ‘H under various shadowing variance o
and correlation distance d..

without replacement method to choose |©2,,,| = 10 bands for
each sensor from K = 20 bands. For the locations in Zq,
we choose the weight to be w,(gl) =1for1 <k <10, and
w,(;) = (C'for 11 < k < 20. For the locations in Z5, we choose
the weight to be w,(f) =(Cforl<k<10, and w,(f) =1 for
11 < k < 20. Therefore, the weight C' serves as a measure of
the level of non-homogeneity. For C' = 1, it is homogeneous
with identical weights. As C' increases, the observations of the
spectrum become increasingly non-homogeneous.

Fig. 7 illustrates that the proposed method surpasses the
baseline methods and is stable under inhomogeneity of the
measurement topology, achieving an improvement of around
20% in reconstruction accuracy. The NMF-TPS method is
not suitable for such sparse and non-homogeneous case since
a sparse I' may hinder the separation of S and ®*. The
non-homogeneous spectrum observation is different from the
non-homogeneous sampling positions. Because, with a non-
homogeneous spectrum, i.e., observing different spectrums
at different locations, the resulting sparse I' will hinder
separation. This is because the separability of NMF is only
guaranteed under a dense observation matrix. The proposed
method effectively handles extremely non-homogeneous spec-
trum cases and still maintains a significant improvement over
the baselines.

C. The Influence of Different Shadowing Parameters

We quantify the reconstruction performance of the proposed
method under different shadowing variance o, = 1 — 6 and
different correlation distance d. = 10 —50. We choose the full
observation case K = 20, and M = 130 which corresponding
to p = 5%.

We first choose correlation distance d. = 30 and varying
os from 1 to 6. Fig. 8(a) demonstrates the performance of
the proposed method outperforms the baseline methods with
an 18% — 31% improvement under the shadowing variances
os = 1 — 6. The increasing of the shadowing variance will
cause a degradation in the performance of all the methods.

Then, we choose os; = 4 and varying d. from 10 to 50.
Fig. 8(b) demonstrates that the proposed method surpasses the
baseline methods, showing an improvement of 14% — 22%
across the correlation distances d. = 10 — 50. Additionally, a
larger correlation distance contributes to the performance gain.
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D. The Influence of Off-grid Measurements

For tensor completion, an off-grid measurements can cause
large error and one generally prefers a measurement collecting
from the grid center. The proposed method can naturally deal
with the off-grid measurements case. Here, we numerically
study the influence of off-grid measurements issue through
comparing it with on-grid measurements to showcase the
proposed method.

The simulation is performed under N = 10 — 30, K = 20,
M = C1Nlog?(N) with C; = 2. Fig. 9 shows that the pro-
posed method outperforms baselines in over 20% improvement
in reconstruction accuracy. In addition, the proposed method
is stable under off-grid measurements which shows a similar
performance between the on-grid and off-grid measurements.
This is because the proposed method has an interpolation as a
intermediate step, it can deal with the off-grid measurements.
The performance between the off-grid and on-grid case ap-
proaches at large N.

E. The Influence of Number of Sources

We quantify the reconstruction performance of the proposed
method under different number of sources R = 2 — 3 and
different number of measurements M = 52 — 260 which is
of sampling ratio p = 2% — 10% under fixed resolution N =
N7 = Ny = 51. The result as shown in Fig. 10 demonstrates
that the proposed method outperforms baseline methods under
different 12, and an improvement of over 25% in reconstruction
accuracy can be achieved. The reason that the NMSE value
for R = 3 is smaller than R = 2 is that, extra source will
bring into more energy in the field, thus increasing the values
of H in || H — H|[%/|H]3%-

FE. Experiment under Real Data

We have tested our solution under the real data [38] col-
lected in the hallways of the A5, A6 buildings on the campus
of the University of Mannheim. We select the measurements
from 5 frequency bands: 2.412GHz, 2.432GHz, 2.447GHz,
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Figure 11. Reconstruction NMSE of real dataset under different sampling

ratio p = M /Mp.

2.457GHz, and 2.462GHz. In this dataset, the indoor region
is a 14 x 34m? area which is divided into 1 x 1m? grids and
there are My = 166 RSS measurements for each emitter. The
sampling ratio was varied from 10% to 30%. We choose a
value of 1 = 3.2 to ensure the threshold of SVT algorithm
preserves at least 99% information of the matrix. The simu-
lation result is shown in Fig. 11. To see the visual plot, we
choose a sampling ratio of p = 10%, utilizing measurements
from 17 locations, as shown in Fig. 12.

The proposed method outperforms the TPS-BTD and NMF-
TPS baselines with an improvement over 3% under different
sampling ratio. The visual plot is based on a sampling ratio of
10%, utilizing measurements from only 17 locations to recon-
struct the entire tensor. The visual performance of the proposed
method is promising, and more details can be reconstructed.

VI. CONCLUSION

This paper developed a novel integrated interpolation and
BTD approach for reconstructing power spectrum maps. This
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integrated approach addressed the spatial correlation of power
spectrum maps, captured their low-rank characteristics, and re-
duced errors from off-grid measurements. An algorithm based
on alternating least squares and singular value thresholding
was developed. Theoretical analysis showed that the incorpo-
ration of the BTD structure improved interpolation. Extensive
simulations were conducted, demonstrating that the proposed
method achieved over 10% improvement in reconstruction
accuracy across various scenarios, such as different numbers
of sensors, measurement topology homogeneity, shadowing
parameters, and off-grid scenarios.

APPENDIX A
PROOF OF THEOREM 1

Under v = 0, the solution for the weighted least-squares
problem (14) is

0 = (2 X;;W2e 0 X)) 7'® @ X,;;W2vec(T). (26)

Denote v, = [ﬂk),wék),-n ,vgf[)]T € RM and recall that
I'(m,k) = &) From (4), we have,

vec(T)

= [’YIT7A/;7 U 77}(]T

= [p(z1)1 - p(zm)br, -+, p(z1) o5 -~ plza)px]" + €

=p+é (27)
where € = [¢1,-++ , &, €, ,Ex]T € RMEXL

Applying third order Taylor’s expansion to p(z,,) at the
neighborhood of ¢;;, we have

p(zm) = pleij) + (Vplei) ' (€ij) (zm — cij)
+ 3 (i — )"V pley) (2 — €iy)
+ P3(zm — cisl®)
where Vp(c;;) is the first order derivative of p((z) evaluated
z

at point ¢;j, V2p(c;;) is the Hessian matrix of p(z) evaluated

at point ¢;;, o(z) means lim,_,oo(z)/x — 0, P(zp, —¢;j) =
v k1tk2) 5e,

Syt Tt (2 (1) =iy (1) (200 (2) —ciy ()

represents third order component, z,,(n) represent the nth

element in z,,.

cij) + o(l|lzm — (28)

Denote P;; = [P(z1 — ¢;j), -+, P(zm — ¢;;)]T and recall
® = [p1,¢2, -, ¢K]. Then, the expression of p in (27) can
be rearranged into the following matrix form

plci;)
Vp(cij)
V2p(eij)
where 7;; is a vector of the residual terms o(||z,, — cii|[?).
Since E{€} = 0, the expectation of ©;; in (26) can be
written as
E{®:}
=E{(®® X;;W;®" @ X;)'®® X;;Wvec(I')}
= (@0 X;W e 0 X)) '® 0 X;Wp.

p=2"® X +®T@ P, +7; (29

The variance of éij can be derived as follows:
V{©;}
= E{(©;; — E{©;})*}
=E{(®® X;;W;®" @ X};)"'® ® X;;Wvec(T)
— (P X;Wie' e Xj;) e X;;Wip)}
=E{((®® X;;W;®" ® X)) "'®® X;;W)e)?}
E{(®® X;;W ®" @ X;) ' (®® X;;W;é
xEW:2e' @ X)(® o X;W, e '« X))~}
(30)
Since each sensor measures all the frequency bands, W;;,
defined in (12), is identity matrix. Through simple matrix

multiplication, the matrix ®®X;; Wz PTeX ZTJ can be derived
as follows:

K —1
(@0 X;W e 0 X)) = (Z qszAl) (31)
k=1

where
aq b1 C1
A =| bl D E |,
C—{ EI F1
Wlth a1 = an I*{ij(zm), b1 = Z"L f@ij(zm)(zm —
cij)', e = X, kij(Zm)vec((zm — cij)(zm — €ij)")T,
D, = X, (zm — €ij)hij(zm)(zm — ¢iy)', E1 =

Yo (Zm — €ij)kij(zm)vee((2m — €ij)(zm — €ij)")T, F1 =
Do vee((Zm — €ij) (2m — i) ) kij (zm) vee((zm — €45) (2m —
ci;)")T. Here, A; is a topology matrix that only depends on
the sample locations z,,, the grid position ¢;;, and the kernel
function x;;. In addition,

K
PRX;;W2EW2 S T0X], = 67 (in2s+e*) Ay (32)
k=1

where

az b C2

Ay=| bl D, E, |,

Cg Eg F2
with ay = meffj(zm)7 b, = meffj(zm)(zm
cij)', 2 = X, wii(zm)vec((zm — €ij)(zm — €))7,
D, = >.(z - cij), By =

Cis g



> vee((zm — €ij) (2m —cij) )6 (2m ) vee((2m — €ij) (Zm —
ci;)")T. Likewise, Aj is also a topology matrix that captures
the impact from the sample locations.

Thus, Equation (30) is further derived as follows:

V{©;;}

K -1 K
=E{ <Z¢>2A1> A
k=1 k=1
-1

(Eoa))

inf,k +€%) Ay

1

e
(33)

Since 7,1 (2) ~ N(0,07) and € ~ N'(0,02) in (1) and (2),

we have
K

B{ Y- ket 8)}
k=1

¢>k¢kE{mk} +Z¢>kE{e

k=1
2 E 2 2
O-"7+ d)k.o'
k=1

Since ©,; is deterministic, we have V{©,;—0;;} = V{©,;}.
Under single source case, we have [©;;]1 1) = aj;. Thus,
from (33) and (34), the variance of interpolation error &;;
becomes

V{fz‘j} = [V{éij -

Mw HMN

(34)

~
Il

1

®ij}]
Ei{:l ¢% 2 1 2
= o, + (o C({ZWL}a b)
(ZkK:1 ¢i)2 ! Zf:l @
where C({zn},b) = [A7 A2 A]]

sensor locations z,,, and window size
in Theorem 1.

(1,1)

11 is a function of the

. This leads to the result

APPENDIX B
PROOF OF PROPOSITION 1

For the error term related to frequency-selective fading 0727,
we have

K
wn(é) é Zk:l ¢i _ 1
K 2 21¢J ¢'2 2
(T, op)” 1+t

Then, a larger value of Y-, ¢7¢7/ STR L ¢4 will contribute
to a smaller value of w, (®), vice versa. It can be verified
easily that when there is equal -power allocation, i.e., ¢; = ¢;,
Vi # Gy D isg ®? qb /Zk | ¢} attains its largest value (K —
1)/2, thus @, (®) attains its smallest value --. When there is
a power boost in kth frequency band, i.e., ¢ approaches K
and others approaches 0, Y-, ., ¢7¢7/ Zszl ¢% will attain its
smallest value 0, thus @, (®) attains its largest value 1.

[A 1A2 1 (1 1) {Zd)k ¢knrk+€ )}

For the error term related to measurement noise af, we have
1

Yo 03

It can be verified easily that it attains the largest value 1/K

when there is equal-power allocation, i.e., ¢; = ¢;, Vi # j and

the smallest value 1/K? when there is a power boost in kth

frequency band, i.e., ¢ approaches K and others approaches
0. This leads to the result in Proposition 1.

w (®) £

APPENDIX C
PROOF OF PROPOSITION 2

The derivation follows the same approach for proving
Theorem 1, resulting in the local polynomial interpolation
error for the kth frequency band as

vy = (o ;) C{zn},b)

where the result coincides with (22) under K = 1. Note
that since the frequency-selective fading 7, in (1) and the
measurement noise € in (2) are assumed to be independent
across k, given the sensor topology z,, and ¢, the interpolation
error §Z(jk ) is also independent across k. Therefore, the averaged
interpolation error of all the K frequency bands is

K (k)
V{&j}ZZk_lz{gw}_( 2+Z ) ({zm},0).

APPENDIX D
PROOF OF PROPOSITION 3

¢2

We have the difference value of the variance of interpolation
error between the integrated interpolation and BTD approach
and conventional frequency-by-frequency interpolation as fol-
lows:

& - &
_ +Z o2 — lec(:ﬂﬁ o2 — 1 o2
¢%K " (zi,ep) " Tl |
_ (1 - (gfg_l;%V) o2 (35)
- k::ll k ) 2
(e =) "

For (35), the coefficient of 0'72] can be derived as follows:

Ef:ﬂbé _ 221‘;&;‘ ¢12¢§ >0
(i 632 (D, ¢3)?

For (36), the coefficient of o2 can be derived as follows:

<Z¢2 i mk)

1 Zl#kqle 1) >
= —— e
s (o

1 Zl;ﬁk ¢l
Zk 1 ¢k Z k

1—




Thus, &, > & and the difference is

2> i ¢2¢2 Zl;ék ¢l
&E—& = = .
! (Zk:1 b7)? n Zk L7 Z oK
APPENDIX E

PROOF OF PROPOSITION 4

The derivation is the same as proving Theorem 1 in Ap-
pendix A, except that, due to the sparse observation, (31)
becomes

(@oX,WieTo X)) = (K'A)"". @7

To verify the above result, using Equation (12) and the
definition of ® and X;, the first element in the matrix
P X, W2 T ® XT- is derived as follows:

[®® X”WQ o' X5] )

- Z Z ¢i¢(m7 kf)l‘iij(zm)

|
NE
] >
&
3
~
El
~
3

(38)

which equals to K’a;, where a; is defined in (31) and the last
equation is because |{2,,,| = Zle Y(m, k) = K'.

Similarly, one can easily show that all the other elements
in the matrix ® ® Xile%CI'T ® XITJ equals to the corre-
sponding element in A; scaled by K’. Moreover, considering
Zszl ¥(m, k) = K', Equation (32) becomes

PR X ;Wiee W, o' @ X, = K' (2, + €*) Aa.
Then, the remaining part in Appendix A can be directly
applied based on the modified quantities (37) and (39), leading
to the following result V{;;} = ((o7 + 02)/K')C({zm},b)
in Proposition 4.

(39)

APPENDIX F
PROOF OF THEOREM 2
B 0 AT e RM and T(m, k) =
Zm)ol) +

Recall v, = [n;
(k) . From (4), under R = 2, we have 'y(k) = pM(

5k+P(2)( )82 + & Thus,
VGC(F) = [71’1“77”2[‘3 T 77}(]T
= [p(l)(zl)qbgl) + @ (z)) §2)7_.,
(1)( )¢(1) (2)(ZM)¢§2),
P (zl)¢K +pf ( )¢K,
P () + 0@ (2a0)050] +
=pte (40)
Where é: [€17"' 7€15"' agKa"' agK]T S RNIKXl.

Similar to the derivation in (29), the expression of p in (40)
can be rearranged into the following matrix form

=" @ X pij+ " @P; +1; 41)

where P;j = [PM(z1 —c¢yj), -, PW (20 — ¢i5), PP (21 —
Cij)a o ,P(2)(ZM _ Cij)]Ta T;; is a vector of the residual
terms o(||zn, — ¢;5]|%), and

pis = [0 (eij), vee(Vp™M (ciy)), vee(V2p (ei5),
p(Q)(Cij)’VeC(VP(Q)(cij)) VeC(V2 (2) (Czj))}T.

Similar as in Appendix A, the variance of the interpolation
error &;; is as follows:
Vi) = (@0 X,;Wie o X))
xE{(®®X;;W e W e @ X))}

x (P X;W2ie'® X))~ ] (42)

1,1)
Following a similar derivation in (37) and (39), we have
(@@ X; W, e @ X))
_ [ KA, KA ] -

KAy KA “3)
=(1+n)/2x K, Ko =nK, and

where K

E{(®®X;WieeW,®" ® X))}
(M10 + KlO' ) AQ (M20'2 + KQO'EQ) A2
(MQO‘ +K20’ )AQ (Mlo'?’—‘rKlO'g) A2

where M1 = K1 + KQ, M2 = 2K2
Assume A; is invertible and the Schur complement of
|: K1A1 K2A1

KoA, KA, is also invertible, then we have

] N

(]‘11)
Since 0'2

2 and o are independent, we can analyze V{;;}
separately. Through simple matrix operations, we have

|:A|: KlU?AQ KQO‘?AQ :|A:|
(1,1

(<I>®X”W2<I'T®XT)
AT i AT
A ! 7K2_1K§A;1

K2

K2
Then, (42) equals

A (M10'§ + K10'€2)A2 (MQO’; + KQUS)AQ
(M20n+K2062)A2 (M10W+K10€2)A2

K20'62A2 K10'€2A2
—2n —2 2
= mvb
G a1 (b
and
Ml(f A2 MQO’ A2
A m

|: |: MQUgAQ MlaﬁAg :| :|(1 1

92— 1012 + 101 — 203
_ 0’ + 10 L 02C ({2, b}).
K (1— 32 +27)

This concludes the result in Theorem 2.
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